900 resultados para bayesian inference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuber borchii (Ascomycota, order Pezizales) is highly valued truffle sold in local markets in Italy. Despite its economic importance, knowledge on its distribution and population variation is scarce. The objective of this work was to investigate the evolutionary forces shaping the genetic structure of this fungus using coalescent and phylogenetic methods to reconstruct the evolutionary history of populations in Italy. To assess population structure, 61 specimens were collected from 11 different Provinces of Italy. Sampling was stratified across hosts and habitats to maximize coverage in native oak and pine stands and both mychorrizae and fruiting bodies were collected. Samples were identified considering anatomo-morphological characters. DNA was extracted and both multilocus (AFLP) and single-locus (18 loci from rDNA, nDNA, and mtDNA) approaches were used to look for polymorphisms. Screening AFLP profiles, both Jaccard and Dice coefficients of similarity were utilized to transform binary matrix into a distance matrix and then to desume Neighbour-Joining trees. Though these are only preliminary examinations, phylogenetic trees were totally concordant with those deriving from single locus analyses. Phylogenetic analyses of the nuclear loci were performed using maximum likelihood with PAUP and a combined phylogenetic inference, using Bayesian estimation with all nuclear gene regions, was carried out. To reconstruct the evolutionary history, we estimated recurrent migration, migration across the history of the sample, and estimated the mutation and approximate age of mutations in each tree using SNAP Workbench. The combined phylogenetic tree using Bayesian estimation suggests that there are two main haplotypes that are difficult to be differentiated on the basis of morphology, of ecological parameters and symbiontic tree. Between these two lineages, that occur in sympatry within T. borchii populations, there is no evidence of recurrent migration. However, migration over the history of the sample was asymmetrical suggesting that isolation was a result of interrupted gene flow followed by range expansion. Low levels of divergence between the haplotypes indicate that there are likely to be two cryptic species within the T. borchii population sampled. Our results suggest that isolation between populations of T. borchii could have led to reproductive isolation between two lineages. This isolation is likely due to sympatric speciation caused by a multiple colonization from different refugia or a recent isolation. In attempting to determinate whether these haplotypes represent separate species or a partition of the same species we applied Biological and Mechanistic species Concepts. Notwithstanding, further analyses are necessary to evaluate if selection favoured premating or post-mating isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi è uno studio di alcuni aspetti della nuova metodologia “deep inference”, abbinato ad una rivisitazione dei concetti classici di proof theory, con l'aggiunta di alcuni risultati originali orientati ad una maggior comprensione dell'argomento, nonché alle applicazioni pratiche. Nel primo capitolo vengono introdotti, seguendo un approccio di stampo formalista (con alcuni spunti personali), i concetti base della teoria della dimostrazione strutturale – cioè quella che usa strumenti combinatoriali (o “finitistici”) per studiare le proprietà delle dimostrazioni. Il secondo capitolo focalizza l'attenzione sulla logica classica proposizionale, prima introducendo il calcolo dei sequenti e dimostrando il Gentzen Hauptsatz, per passare poi al calcolo delle strutture (sistema SKS), dimostrando anche per esso un teorema di eliminazione del taglio, appositamente adattato dall'autore. Infine si discute e dimostra la proprietà di località per il sistema SKS. Un percorso analogo viene tracciato dal terzo ed ultimo capitolo, per quanto riguarda la logica lineare. Viene definito e motivato il calcolo dei sequenti lineari, e si discute del suo corrispettivo nel calcolo delle strutture. L'attenzione qui è rivolta maggiormente al problema di definire operatori non-commutativi, che mettono i sistemi in forte relazione con le algebre di processo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an extension of the approach provided by Kluppelberg and Kuhn (2009) for inference on second-order structure moments. As in Kluppelberg and Kuhn (2009) we adopt a copula-based approach instead of assuming normal distribution for the variables, thus relaxing the equality in distribution assumption. A new copula-based estimator for structure moments is investigated. The methodology provided by Kluppelberg and Kuhn (2009) is also extended considering the copulas associated with the family of Eyraud-Farlie-Gumbel-Morgenstern distribution functions (Kotz, Balakrishnan, and Johnson, 2000, Equation 44.73). Finally, a comprehensive simulation study and an application to real financial data are performed in order to compare the different approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this treatise we consider finite systems of branching particles where the particles move independently of each other according to d-dimensional diffusions. Particles are killed at a position dependent rate, leaving at their death position a random number of descendants according to a position dependent reproduction law. In addition particles immigrate at constant rate (one immigrant per immigration time). A process with above properties is called a branching diffusion withimmigration (BDI). In the first part we present the model in detail and discuss the properties of the BDI under our basic assumptions. In the second part we consider the problem of reconstruction of the trajectory of a BDI from discrete observations. We observe positions of the particles at discrete times; in particular we assume that we have no information about the pedigree of the particles. A natural question arises if we want to apply statistical procedures on the discrete observations: How can we find couples of particle positions which belong to the same particle? We give an easy to implement 'reconstruction scheme' which allows us to redraw or 'reconstruct' parts of the trajectory of the BDI with high accuracy. Moreover asymptotically the whole path can be reconstructed. Further we present simulations which show that our partial reconstruction rule is tractable in practice. In the third part we study how the partial reconstruction rule fits into statistical applications. As an extensive example we present a nonparametric estimator for the diffusion coefficient of a BDI where the particles move according to one-dimensional diffusions. This estimator is based on the Nadaraya-Watson estimator for the diffusion coefficient of one-dimensional diffusions and it uses the partial reconstruction rule developed in the second part above. We are able to prove a rate of convergence of this estimator and finally we present simulations which show that the estimator works well even if we leave our set of assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach. We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions. The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most serious problems of the modern medicine is the growing emergence of antibiotic resistance among pathogenic bacteria. In this circumstance, different and innovative approaches for treating infections caused by multidrug-resistant bacteria are imperatively required. Bacteriophage Therapy is one among the fascinating approaches to be taken into account. This consists of the use of bacteriophages, viruses that infect bacteria, in order to defeat specific bacterial pathogens. Phage therapy is not an innovative idea, indeed, it was widely used around the world in the 1930s and 1940s, in order to treat various infection diseases, and it is still used in Eastern Europe and the former Soviet Union. Nevertheless, Western scientists mostly lost interest in further use and study of phage therapy and abandoned it after the discovery and the spread of antibiotics. The advancement of scientific knowledge of the last years, together with the encouraging results from recent animal studies using phages to treat bacterial infections, and above all the urgent need for novel and effective antimicrobials, have given a prompt for additional rigorous researches in this field. In particular, in the laboratory of synthetic biology of the department of Life Sciences at the University of Warwick, a novel approach was adopted, starting from the original concept of phage therapy, in order to study a concrete alternative to antibiotics. The innovative idea of the project consists in the development of experimental methodologies, which allow to engineer a programmable synthetic phage system using a combination of directed evolution, automation and microfluidics. The main aim is to make “the therapeutics of tomorrow individualized, specific, and self-regulated” (Jaramillo, 2015). In this context, one of the most important key points is the Bacteriophage Quantification. Therefore, in this research work, a mathematical model describing complex dynamics occurring in biological systems involving continuous growth of bacteriophages, modulated by the performance of the host organisms, was implemented as algorithms into a working software using MATLAB. The developed program is able to predict different unknown concentrations of phages much faster than the classical overnight Plaque Assay. What is more, it gives a meaning and an explanation to the obtained data, making inference about the parameter set of the model, that are representative of the bacteriophage-host interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focused on the role of oceanographic discontinuities and the presence of transitional areas in shaping the population structure and the phylogeography of the Raja miraletus species complex, coupled with the test of the effective occurrence of past speciation events. The comparisons between the Atlantic African and the North-Eastern Atlantic-Mediterranean geographic populations were unravelled using both Cytochrome Oxidase I and eight microsatellite loci. This approach guaranteed a robust dataset for the identification of a speciation event between the Atlantic African clade, corresponding to the ex Raja ocellifera nominal species, and the NE Atlantic-Mediterranean R. miraletus clade. As a matter of fact, the origin of the Atlantic Africa and the NE Atlantic-Mediterranean deep split dated about 11.74MYA and was likely due to the synergic influence currents and two upwelling areas crossing the Western African Waters. Within the Mediterranean Sea, particular attention was also paid to the transitional area represented by Adventura and Maltese Bank, that might have contributed in sustaining the connectivity of the Western and the Eastern Mediterranean geographical populations. Furthermore, the geology of the easternmost part of Sicily and the geo-morphological depression of the Calabrian Arc could have driven the differentiation of the Eastern Mediterranean Sea. Although bathymetric and oceanographic discontinuity could represent barriers to dispersal and migration between Eastern and Western Mediterranean samples, a clear and complete genetic separation among them was not detected. Results produced by this work identified a speciation event defining Raja ocellifera and R. miraletus as two different species, and describing the R. miraletus species complex as the most ancient cryptic speciation event in the family Rajidae, representing another example of how strictly connected the environment, the behavioural habits and the evolutionary and ecologic drivers are.