987 resultados para WELL LASERS
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sb-assisted GaInNAs/GaAs quantum wells (QWs) with high (42.5%) indium content were investigated systematically. Transmission electron microscopy, reflection high-energy electron diffraction and photoluminescence (PL) measurements reveal that Sb acts as a surfactant to suppress three-dimensional growth. The improvement in the 1.55 mu m range is much more apparent than that in the 1.3 mu m range.. which can be attributed to the difference in N composition. The PL intensity and the full-width at half maximum of the 1.55 mu m single-QW were comparable with that of the 1.3 Am QWs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Rapid thermal annealing (RTA) has been demonstrated as an important way to improve the crystal quality of GaInNAs(Sb)/GaAs quantum wells. However little investigation has been made into their application in laser growth, especially at a wavelength of 1.55 mu m. When a GaAs-based laser is grown, AlGaAs is usually used for cladding layers. The growth of the p-cladding layer usually takes 30-45 min at a growth temperature higher than that of the GaInNAs(Sb) active region, which affects the material quality. To investigate this effect, various post-growth annealing processes were performed to simulate this process. Great enhancement of the PL intensity was obtained by a two-step process which consisted of annealing first at 700 degrees C for 60 s and then at 600 degrees C for 45 min. We transferred this post-growth annealing to in situ annealing. Finally, a GaInNAsSb laser was grown with a 700 degrees C in situ annealing process. Continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength beyond 1.55 mu m was realized for the first time.
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
Two-dimensional photonic crystals in near infrared region were fabricated by using the focused ion beam ( FIB) method and the method of electron-beam lithography (EBL) combined with dry etching. Both methods can fabricate perfect crystals, the method of FIB is simple,the other is more complicated. It is shown that the material with the photonic crystal fabricated by FIB has no fluorescence,on the other hand, the small-lattice photonic crystal made by EBL combined with dry etching can enhance the extraction efficiency two folds, though the photonic crystal has some disorder. The mechanisms of the enhanced-emission and the absence of emission are also discussed.
Resumo:
Special characteristics of very-small-aperture lasers are observed, including threshold current change, red shift of the spectral position, and short lifetime at low drive current. Physical mechanisms that underlie these special characteristics are analyzed: we find that optical feedback caused by a metal film and heat accumulation inside the laser diode lead to the special characteristics of VSALs, such as threshold current change, red shift of the spectral position, and short lifetime at low drive current, etc. Theoretical simulation is in good agreement with the experimental results.
Resumo:
Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.
Resumo:
Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.
Resumo:
The mode frequencies and field distributions of whispering-gallery (WG)-like modes of square resonators are obtained analytically, which agree very well with the numerical results calculated by the FDTD technique and Pade approximation method. In the analysis, a perfect electric wall for the transverse magnetic mode or perfect magnetic wall for the transverse electric mode is assumed at the diagonals of the square resonators, which not only provides the transverse mode confinement, but also requires the longitudinal mode number to be an even integer. The WG-like modes of square resonators are nondegenerate modes with high-quality factors, which make them suitable for fabricating single-mode low-threshold semiconductor microcavity lasers.
Resumo:
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.
Resumo:
When injected electrons in a quantum well first experience an intersubband relaxation process before their escaping by tunneling through a double-barrier structure behind, the magnetic suppression of intersubband LO or LA phonon scattering can give rise to a noticeable nonthermal occupation in higher-lying subbands. That is clearly verified by the relative intensity ratio of the interband photoluminescence spectra for E-2-HH1 and E-1-HH1 transitions. The observed phenomenon may provide an effective method for controlling intersubband scattering rate, a central issue in so-called quantum cascade lasers, and facilitating the population inversion between subbands in quantum wells.
Resumo:
To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.
Resumo:
We report the morphology of an InGaAs nanostructure grown by molecular beam epitaxy via cycled (InAs)(n)/(GaAs)(n) monolayer deposition. Atomic force microscopy images clearly show that varying monolayer deposition per cycle has significant influence on the size, density and shape of the InGaAs nanostructure. Low-temperature photoluminescence spectra show the effect of n on the optical quality, and 1.35mum photoluminescence with a linewidth of only 19.2meV at room temperature has been achieved in the (InAs)(1)/(GaAs)(1) structure.
Resumo:
The growth pressure and mask width dependent thickness enhancement factors of selective-area MOCVD. grow th were investigated in this article. A, high enhancement of 5.8 was obtained at 130 mbar with the mask width of 70 mum. Mismatched InGaAsP (-0.5%) at the maskless region which could ensure the material at butt-joint region to be matched to InP was successively grown by controlling the composition and mismatch modulation in the selective-area growth. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously in separated confined heterostructure 1.55 gm distributed feedback laser, which not only offered the separated optimization of the active region and the integrated spotsize converter, but also reduced the difficulty of the butt-joint selective regrowth. A narrow beam of 9degrees and 12degrees in the vertical and horizontal directions, a low threshold current of 6.5 mA was fabricated by using this technique. (C) 2003 Elsevier Science B.V. All rights reserved.