901 resultados para Visual selective attention
Resumo:
There are currently limited options for the control of the invasive tropical perennial sedge 'Cyperus aromaticus' (Ridley) Mattf. and Kukenth (Navua sedge). The potential for halosulfuron-methyl as a selective herbicide for Navua sedge control in tropical pastures was investigated by undertaking successive field and shade house experiments in North Queensland, Australia. Halosulfuron-methyl and adjuvant rates, and combinations with other herbicides, were examined to identify a herbicide regime that most effectively reduced Navua sedge. Our research indicated that combining halosulfuron- methyl with other herbicides did not improve efficacy for Navua sedge control. We also identified that low rates of halosulfuron-methyl (25 g ha-1 a.i.) were just as effective as higher rates (73 g ha-1 a.i.) at controlling the sedge, and that this control relied on the addition of the adjuvant Bonza at the recommended concentration (1% of the spray volume). Pot trials in the controlled environment of the shade house achieved total mortality under these regimes. Field trials demonstrated more variable results with reductions in Navua sedge ranging between 40-95% at 8-10 weeks after treatment. After this period (16-24 weeks after treatment), regrowth of sedge, either from newly germinated seed, or of small plants protected from initial treatment, indicated sedge populations can rapidly increase to levels similar to pre-application, depending on the location and climatic conditions. Such variable results highlight the need for concerted monitoring of pastures to identify optimal treatment times. Ideally, initial treatment should be done when the sedge is healthy and actively growing, with follow up-treatments applied when new seed heads are produced from regrowth.
Resumo:
What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.
Resumo:
The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.
Resumo:
This study examines the organisation and transformation of altar space in the modern Evangelical Lutheran Church of Finland in liturgical and architectural perspective. The research data consists of 65 altar spaces in The Finnish Evangelical Lutheran church buildings. All of these were characterised in Church Government records as churches , built 1962 1999 and had been consecrated. The main data was collected by means of observation, photographing, and drawing sketches of altar spaces. The focus of this study concerns the organisation of modern Finnish Evangelical Lutheran altar spaces and, in particular, their changes also in relation to the liturgical movement. The challenge of this approach was especially in discovering the spatial identity of an altar space in terms of unequivocal boundaries. The analysis was realised in three stages. Interiors, the organisation of altar space, as well as architectonic qualities of altar spaces in terms of floor elevations, shapes of ceilings, lighting, and openings in the altar space were analysed. Moreover, attention was focused on furnishing and fixed versus movable pieces of furniture (such as the altar, altar rail, the pulpit, the baptismal font, and lectern). Finally, the potential qualitative and quantitative changes in altar space were examined. All in all, the majority of churches in the data featured elongated church halls with an altar at the end of the nave. To look at the data in chronological perspective, increasingly wide church halls had been built since the 1980s (yet there was only one central hall in which the altar was placed at the middle point of the church). Every third church altar was movable. As for the focal point of this study and the altar in particular, it was my aim to pay attention to the versus populum altar and its development in relation to the (Lutheran) liturgy. Hence, it was meaningful to determine, in terms of interior design, whether liturgists were able to celebrate facing the people attending the service. In the 1960s and 70s, a versus orientem altar featured in more than half of all new Finnish Lutheran churches, yet in 2000 two out of three churches featured a versus populum altar. For architectural and esthetic reasons (and not primarily due to liturgical ideas), also altars standing freely off the walls had been constructed. In terms of the liturgy, versus populum altars had been realised in expectation of increased communication between liturgist and worshippers. However, the analysis indicated that the altar could also become a divider of space. This aspect is a novel finding in relation to earlier and concurrent discussions concerning the liturgical movement. This study concluded, all in all, that altars had been increasingly constructed closer and closer to the worshiping parish and, accordingly, used increasingly often in the versus populum manner. Lecterns were often movable until the millennium this was the case in most altar spaces. Baptismal fonts did not have a permanent place in this data, and the data even included altar spaces with no baptismal fonts in the choir, nor the church hall. The position and status of fonts was generally weakened even if baptism in the Lutheran Church was regarded as one of the two sacraments together with the eucharist. The study concluded that even if baptism is regarded as a sacrament in the church, the position and status of baptismal fonts had weakened overall in newer church architecture. In other words, the tendency of the liturgical movement to emphasise the service and its celebration had obviously had its effect on the placement of baptismal fonts in the church hall. This research indicated that the pieces of furniture that mostly involved (many kinds of) visual and spatial changes included the altar and the lectern. In certain instances, fixed furnishings had been substituted by movable pieces or, moreover, new pieces of furniture and paraphernalia such as music instruments, pieces of art, tables, chairs and plants were brought in. In the Evangelical Lutheran Church of Finland, liturgical changes were principally inspired by the Catholic Church, in which liturgical changes are essentially based on Canon Law. Unlike Finnish Lutheranism, Catholicism provides detailed rules and principles even regarding the design of an altar space. According to this study, in the Finnish Lutheran Church, the primarily functional nature of given guidelines and instructions characterises several practical solutions in furnishing.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
Revolution at home! Visual Changes in Everyday Life in Finland in the Late 1960s and Early 1970s The purpose of my research was to investigate the visual changes in private homes in Finland during the 1960s and 1970s. The 1960s is often described as a turning point in Finnish life, a time when the society's previous agricultural orientation began to give way first to an industrial orientation and then, by the end of the 1970s, to a service orientation. My title refers to three elements in the transition period: the question of daily life; the timeframe; and the visual changes observable in private homes, which in retrospect signalled a kind of revolution in the social orientation. Those changes appeared not only in colours and designs but also in the forms and materials of household objects. My premise is that analysing interiors from a historical perspective can reveal valuable information about Finnish society and social attitudes, information that might easily escape attention otherwise. I have used the time-honoured method of collecting narratives. As far back as Aristotle, formulating narratives has been a means of gaining knowledge. By collecting and classifying narratives about the 1960s and 1970s, it is possible to gain new insight into these important decades. The archetypal 1960s narrative, involving student demonstrations and young people's efforts to improve society, is well known. Less well known is the narrative that relates the changes going on in daily life. Substantially the study focuses mainly on fabrics, porcelain ware and the use of plastics. Marimekko's style is especially important when following innovations in the 1950s, 1960s and 1970s. Porcelain production at the Arabia factory was another element that had a great influence on the look of Finnish homes and kitchens; and a further widespread phenomenon of the late 1960s and early 1970s was the use of plastics in many different forms. Further evidence was sought in Anttila department store mail catalogues, which displayed products that were marketed on a large scale, as well as in magazines such as Avotakka. The terminal point of the visual evolution is the real homes, as seen in the questionnaire "Homemade". I have used the 800 pages of the oral history text that respondents of the Finnish Literature Society have written about their first home in the 1960s. I also used archival material on actual homes in Helsinki from the archives of the Helsinki City Museum. The basic story is the elite narrative, which was produced by students in the 1960s. My main narrative from the same time is visual change in everyday life in the late 1960s and early 1970s. I have classified the main narrative of visual change into four subcategories: the narrative of national ideas, the narrative of a better standard of living, the narrative of objects in the culture of everyday life and the narrative of changing colour and form.
Resumo:
The interactive artwork Temporal arose from a series of art-science investigations with some of Australia’s leading flying fox ecologists. It was designed as a gently evolving meditation upon the complex, periodic processes that mark Australia’s often irregular seasonal changes. In turn these changes directly govern the migratory movements of Australia’s keystone pollinating mammals - the mega bats (Flying Foxes). Temporal further called attention to our increasing capacity to profoundly disturb these partners within Australia’s complex, life-supporting systems
Resumo:
Finely control of product selectivity is an essential issue in organic chemical production. In the synthesis of functionalized anilines via reduction of the corresponding nitroarenes, the challenge is to selectively reduce only the nitro group in the presence of other reducible functional groups in nitroarene molecules at a high reaction rate. Normally, the nitroarene is reduced stepwise through a series of intermediates that remain as byproducts, increasing the aniline synthesis cost. Here we report that alloying small amounts of copper into gold nanoparticles can alter the reaction pathway of the catalytic reduction under visible-light irradiation at ambient temperature, allowing nitroaromatics to be transformed directly to anilines in a highly selective manner. The reasons for the high efficiency of the photocatalytic reduction under these comparatively benign conditions as well as the light-excited reaction mechanisms are discussed. This photocatalytic process avoids byproducts, exhibits a high reaction rate and excellent substituent tolerance, and can be used for the synthesis of many useful functionalized anilines under environmentally benign conditions. Switching of the reaction pathway simply by tailoring the bimetallic alloy NPs of the photocatalysts is effective for engineering of product chemoselectivity.
Resumo:
The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.
Resumo:
Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.
Resumo:
The overall aim of this dissertation was to study the public's preferences for forest regeneration fellings and field afforestations, as well as to find out the relations of these preferences to landscape management instructions, to ecological healthiness, and to the contemporary theories for predicting landscape preferences. This dissertation includes four case studies in Finland, each based on the visualization of management options and surveys. Guidelines for improving the visual quality of forest regeneration and field afforestation are given based on the case studies. The results show that forest regeneration can be connected to positive images and memories when the regeneration area is small and some time has passed since the felling. Preferences may not depend only on the management alternative itself but also on the viewing distance, viewing point, and the scene in which the management options are implemented. The current Finnish forest landscape management guidelines as well as the ecological healthiness of the studied options are to a large extent compatible with the public's preferences. However, there are some discrepancies. For example, the landscape management instructions as well as ecological hypotheses suggest that the retention trees need to be left in groups, whereas people usually prefer individually located retention trees to those trees in groups. Information and psycho-evolutionary theories provide some possible explanations for people's preferences for forest regeneration and field afforestation, but the results cannot be consistently explained by these theories. The preferences of the different stakeholder groups were very similar. However, the preference ratings of the groups that make their living from forest - forest owners and forest professionals - slightly differed from those of the others. These results provide support for the assumptions that preferences are largely consistent at least within one nation, but that knowledge and a reference group may also influence preferences.
Resumo:
In the present thesis, questions of spectral tuning, the relation of spectral and thermal properties of visual pigments, and evolutionary adaptation to different light environments were addressed using a group of small crustaceans of the genus Mysis as a model. The study was based on microspectrophotometric measurements of visual pigment absorbance spectra, electrophysiological measurements of spectral sensitivities of dark-adapted eyes, and sequencing of the opsin gene retrieved through PCR. The spectral properties were related to the spectral transmission of the respective light environments, as well as to the phylogentic histories of the species. The photoactivation energy (Ea) was estimated from temperature effects on spectral sensitivity in the long-wavelength range, and calculations were made for optimal quantum catch and optimal signal-to-noise ratio in the different light environments. The opsin amino acid sequences of spectrally characterized individuals were compared to find candidate residues for spectral tuning. The general purpose was to clarify to what extent and on what time scale adaptive evolution has driven the functional properties of (mysid) visual pigments towards optimal performance in different light environments. An ultimate goal was to find the molecular mechanisms underlying the spectral tuning and to understand the balance between evolutionary adaptation and molecular constraints. The totally consistent segregation of absorption maxima (λmax) into (shorter-wavelength) marine and (longer-wavelength) freshwater populations suggests that truly adaptive evolution is involved in tuning the visual pigment for optimal performance, driven by selection for high absolute visual sensitivity. On the other hand, the similarity in λmax and opsin sequence between several populations of freshwater M. relicta in spectrally different lakes highlights the limits to adaptation set by evolutionary history and time. A strong inverse correlation between Ea and λmax was found among all visual pigments studied in these respects, including those of M. relicta and 10 species of vertebrate pigments, and this was used to infer thermal noise. The conceptual signal-to-noise ratios thus calculated for pigments with different λmax in the Baltic Sea and Lake Pääjärvi light environments supported the notion that spectral adaptation works towards maximizing the signal-to-noise ratio rather than quantum catch as such. Judged by the shape of absorbance spectra, the visual pigments of all populations of M. relicta and M. salemaai used exclusively the A2 chromophore (3, 4-dehydroretinal). A comparison of amino acid substitutions between M. relicta and M. salemaai indicated that mysid shrimps have a small number of readily available tuning sites to shift between a shorter - and a longer -wavelength opsin. However, phylogenetic history seems to have prevented marine M. relicta from converting back to the (presumably) ancestral opsin form, and thus the more recent reinvention of marine spectral sensitivity has been accomplished by some other novel mechanism, yet to be found
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.