2 resultados para Visual selective attention
em CaltechTHESIS
Resumo:
My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.