900 resultados para Tiempo real
Resumo:
This study develops a real options approach for analyzing the optimal risk adoption policy in an environment where the adoption means a switch from one stochastic flow representation into another. We establish that increased volatility needs not decelerate investment, as predicted by the standard literature on real options, once the underlying volatility of the state is made endogenous. We prove that for a decision maker with a convex (concave) objective function, increased post-adoption volatility increases (decreases) the expected cumulative present value of the post-adoption profit flow, which consequently decreases (increases) the option value of waiting and, therefore, accelerates (decelerates) current investment.
Resumo:
The purpose of this paper is to test for the effect of uncertainty in a model of real estate investment in Finland during the hihhly cyclical period of 1975 to 1998. We use two alternative measures of uncertainty. The first measure is the volatility of stock market returns and the second measure is the heterogeneity in the answers of the quarterly business survey of the Confederation of Finnish Industry and Employers. The econometric analysis is based on the autoregressive distributed lag (ADL) model and the paper applies a 'general-to-specific' modelling approach. We find that the measure of heterogeneity is significant in the model, but the volatility of stock market returns is not. The empirical results give some evidence of an uncertainty-induced threshold slowing down real estate investment in Finland.
Resumo:
Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
Irritable bowel syndrome (IBS) is a common multifactorial functional intestinal disorder, the pathogenesis of which is not completely understood. Increasing scientific evidence suggests that microbes are involved in the onset and maintenance of IBS symptoms. The microbiota of the human gastrointestinal (GI) tract constitutes a massive and complex ecosystem consisting mainly of obligate anaerobic microorganisms making the use of culture-based methods demanding and prone to misinterpretation. To overcome these drawbacks, an extensive panel of species- and group-specific assays for an accurate quantification of bacteria from fecal samples with real-time PCR was developed, optimized, and validated. As a result, the target bacteria were detectable at a minimum concentration range of approximately 10 000 bacterial genomes per gram of fecal sample, which corresponds to the sensitivity to detect 0.000001% subpopulations of the total fecal microbiota. The real-time PCR panel covering both commensal and pathogenic microorganisms was assessed to compare the intestinal microbiota of patients suffering from IBS with a healthy control group devoid of GI symptoms. Both the IBS and control groups showed considerable individual variation in gut microbiota composition. Sorting of the IBS patients according to the symptom subtypes (diarrhea, constipation, and alternating predominant type) revealed that lower amounts of Lactobacillus spp. were present in the samples of diarrhea predominant IBS patients, whereas constipation predominant IBS patients carried increased amounts of Veillonella spp. In the screening of intestinal pathogens, 17% of IBS samples tested positive for Staphylococcus aureus, whereas no positive cases were discovered among healthy controls. Furthermore, the methodology was applied to monitor the effects of a multispecies probiotic supplementation on GI microbiota of IBS sufferers. In the placebo-controlled double-blind probiotic intervention trial of IBS patients, each supplemented probiotic strain was detected in fecal samples. Intestinal microbiota remained stable during the trial, except for Bifidobacterium spp., which increased in the placebo group and decreased in the probiotic group. The combination of assays developed and applied in this thesis has an overall coverage of 300-400 known bacterial species, along with the number of yet unknown phylotypes. Hence, it provides good means for studying the intestinal microbiota, irrespective of the intestinal condition and health status. In particular, it allows screening and identification of microbes putatively associated with IBS. The alterations in the gut microbiota discovered here support the hypothesis that microbes are likely to contribute to the pathophysiology of IBS. The central question is whether the microbiota changes described represent the cause for, rather than the effect of, disturbed gut physiology. Therefore, more studies are needed to determine the role and importance of individual microbial species or groups in IBS. In addition, it is essential that the microbial alterations observed in this study will be confirmed using a larger set of IBS samples of different subtypes, preferably from various geographical locations.
Resumo:
Reliability analysis for computing systems in aerospace applications must account for actual computations the system performs in the use environment. This paper introduces a theoretical nonhomogeneous Markov model for such applications.
Resumo:
The properties of thin films depend to a large extent upon their mechanical stability which in turn is dependent on the intrinsic stresses developed during evaporation. This paper describes a simple method for the measurement of stresses in thin films by the use of real-time holographic interferometry.
Resumo:
Many real-time database applications arise in electronic financial services, safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. For real-time database systems supporting applications with firm deadlines, we investigate here the performance implications, in terms of killed transactions, of guaranteeing multilevel secrecy. In particular, we focus on the concurrency control (CC) aspects of this issue. Our main contributions are the following: First, we identify which among the previously proposed real-time CC protocols are capable of providing covert-channel-free security. Second, using a detailed simulation model, we profile the real-time performance of a representative set of these secure CC protocols for a variety of security-classified workloads and system configurations. Our experiments show that a prioritized optimistic CC protocol, OPT-WAIT, provides the best overall performance. Third, we propose and evaluate a novel "dual-CC" approach that allows the real-time database system to simultaneously use different CC mechanisms for guaranteeing security and for improving real-time performance. By appropriately choosing these different mechanisms, concurrency control protocols that provide even better performance than OPT-WAIT are designed. Finally, we propose and evaluate GUARD, an adaptive admission-control policy designed to provide fairness with respect to the distribution of killed transactions across security levels. Our experiments show that GUARD efficiently provides close to ideal fairness for real-time applications that can tolerate covert channel bandwidths of upto one bit per second.