888 resultados para Stainless steel vertical tube
Resumo:
Several machining processes have been created and improved in order to achieve the best results ever accomplished in hard and difficult to machine materials. Some of these abrasive manufacturing processes emerging on the science frontier can be defined as ultra-precision grinding. For finishing flat surfaces, researchers have been putting together the main advantages of traditional abrasive processes such as face grinding with constant pressure, fixed abrasives for two-body removal mechanism, total contact of the part with the tool, and lapping kinematics as well as some specific operations to keep grinding wheel sharpness and form. In the present work, both U d-lap grinding process and its machine tool were studied aiming nanometric finishing on flat metallic surfaces. Such hypothesis was investigated on AISI 420 stainless steel workpieces U d-lap ground with different values of overlap factor on dressing (Ud=1, 3, and 5) and grit sizes of conventional grinding wheels (silicon carbide (SiC)=#800, #600, and #300) applying a new machine tool especially designed and built for such finishing. The best results, obtained after 10 min of machining, were average surface roughness (Ra) of 1.92 nm, 1.19-μm flatness deviation of 25.4-mm-diameter workpieces, and mirrored surface finishing. Given the surface quality achieved, the U d-lap grinding process can be included among the ultra-precision abrasive processes and, depending on the application, the chaining steps of grinding, lapping, and polishing can be replaced by the proposed abrasive process.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The centrifuge technique was used to investigate the influence of particle size, applied compression, and substrate material (stainless steel, glass, Teflon, and poly(vinyl chloride)) on particle-surface adhesion force. For this purpose, phosphatic rock (rho(p) = 3090 kg/m(3)) and manioc starch particles (rho(p) = 1480 kg/m(3)) were used as test particles. A microcentrifuge that reached a maximum rotation speed of 14 000 rpm and which contained specially designed centrifuge tubes was used in the adhesion force measurements. The curves showed that the adhesion force profile followed a normal log distribution. The adhesion force increased linearly with particle size and with the increase of each increment of compression force. The manioc starch particles presented greater adhesion forces than the phosphatic rock particles for all particle sizes studied. The glass substrate showed a higher adherence than the other materials, probably due to its smoother topographic surface roughness in relation to the other substrata.
Resumo:
The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.
Resumo:
The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Biofilms represent a great concern for food industry, since they can be a source of persistent contamination leading to food spoilage and to the transmission of diseases. To avoid the adhesion of bacteria and the formation of biofilms, an alternative is the pre-conditioning of surfaces using biosurfactants, microbial compounds that can modify the physicochemical properties of surfaces changing bacterial interactions and consequently adhesion. Different concentrations of the biosurfactants, surfactin from Bacillus subtilis and rhamnolipids from Pseudomonas aeruginosa, were evaluated to reduce the adhesion and to disrupt biofilms of food-borne pathogenic bacteria. Individual cultures and mixed cultures of Staphylococcus aureus, Listeria monocytogenes and Salmonella Enteritidis were studied using polystyrene as the model surface. The pre-conditioning with surfactin 0.25% reduced by 42.0% the adhesion of L monocytogenes and S. Enteritidis, whereas the treatment using rhamnolipids 1.0% reduced by 57.8% adhesion of L monocytogenes and by 67.8% adhesion of S. aureus to polystyrene.Biosurfactants were less effective to avoid adhesion of mixed cultures of the bacteria when compared with individual cultures. After 2 h contact with surfactin at 0.1% concentration, the pre-formed biofilms of S. aureus were reduced by 63.7%, L. monocytogenesby 95.9%, S. Enteritidis by 35.5% and the mixed culture biofilm by 58.5%. The rhamnolipids at 0.25% concentration removed 58.5% the biofilm of S. aureus, 26.5% of L monocytogenes, 23.0% of S. Enteritidis and 24.0% the mixed culture after 2 h contact. In general, the increase in concentration of biosurfactants and in the time of contact decreased biofilm removal percentage. These results suggest that surfactin and rhamnolipids can be explored to control the attachment and to disrupt biofilms of individual and mixed cultures of the food-borne pathogens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the influence of interdental spacing on the performance of proximal caries detection methods in primary molars. In addition, aspects related to temporary tooth separation with orthodontic separators were evaluated. The proximal spaces between the posterior primary teeth (n = 344) of 76 children (4-12 years old) were evaluated before and after temporary separation. Stainless steel strips with different standardized thicknesses were used to measure the presence of biological spacing and the spacing obtained after temporary separation with orthodontic rubber rings. First, the presence of proximal caries lesions was assessed by visual inspection, bitewing radiographs and a pen-type laser fluorescence device (DIAGNOdent pen). Visual inspection after temporary separation with separators was the reference standard method in checking the actual presence of caries. Multilevel analyses were performed considering different outcomes: the performance of the methods in detecting caries lesions and the spacing after temporary separation. The spacing did not influence the performance of the caries detection methods. The maximum spacing obtained with temporary tooth separation was 0.80 mm (mean +/- standard deviation = 0.46 +/- 0.13 mm). The temporary separation was more effective in the upper arch and less effective when an initial biological interdental spacing was present. The biological interdental spacing does not influence the performance of proximal caries detection methods in primary molars, and temporary tooth separation provides spacing narrower than 1.0 mm.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.
Resumo:
CO((NH2)-N-15)(2) enriched with the stable isotope N-15 was synthesized based on a reaction involving CO, (NH3)-N-15, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE) was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of (NH3)-N-15, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 degrees C and 120 min of reaction) 1.82 g (yield 76.5%) of the compound was obtained per batch. The synthesized CO((NH2)-N-15)(2) contained 46.2% N, 0.55% biuret, melting point of 132.55 degrees C and did not exhibit isotopic fractionation. The production cost of CO((NH2)-N-15)(2) with 90.0 at. % N-15 was US$ 238.60 per gram.
Resumo:
Listeria monocytogenes is a pathogen capable of adhering to many surfaces and forming biofilms, which may explain its persistence in food processing environments. This study aimed to genetically characterise L monocytogenes isolates obtained from bovine carcasses and beef processing facilities and to evaluate their adhesion abilities. DNA from 29 L monocytogenes isolates was subjected to enzymatic restriction digestion (Ascii and Apal), and two clusters were identified for serotypes 4b and 112a, with similarities of 48% and 68%. respectively. The adhesion ability of the isolates was tested considering: inoculum concentration, culture media, carbohydrate source, NaCl concentration, incubation temperature, and pH. Each isolate was tested at 10(8) CFU mL(-1) and classified according to its adhesion ability as weak (8 isolates). moderate (17) or strong (4). The isolates showed higher adhesion capability in non-diluted culture media, media at pH 7.0, incubation at 25 degrees C and 37 degrees C, and media with NaCl at 5% and 7%. No relevant differences were observed for adhesion ability with respect to the carbohydrate source. The results indicated a wide diversity of PFGE profiles of persistent L monocytogenes isolates, without relation to their adhesion characteristics. Also, it was observed that stressing conditions did not enhance the adhesion profile of the isolates. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
Listeria monocytogenes is a foodborne pathogen of great concern due to the high fatality rates of listeriosis. The consumption of RTE vegetables has increased in Brazil over the last two decades, but little is known about the risks associated to the consumption of these products. This study evaluated the prevalence and counts of L. monocytogenes in 512 packages of ready-to-eat vegetables marketed in Sao Paulo. The isolates were characterized for their serotypes, ribotypes, positivity for virulence genes inIA, inIC and inIJ, resistance to chlorine, growth rate variability and capability to form biofilm on stainless steel (AISI 304, #4) coupons. L. monocytogenes was detected in 3.1% of the samples. Only five samples presented countable levels, with counts between 1.0x10(1) and 2.6x10(2) CFU/g. Isolates belonged to serotypes 1/2b or 4b and most were positive for genes inIC and inIJ. Ribotypable isolates were grouped into four groups: 1038 (69.4%). 19175 (11.3%), 19191 (17.7%) and 18604 (one isolate). Most isolates survived to exposure to 125 ppm of a chlorine-based disinfectant for 3 min. All isolates were capable to attach to the coupons, reaching counts above 4 log(10) CFU/cm(2) and the growth rate (mu) at 25 degrees C of the majority of the isolates varied between 0.1 and 0.2 log OD/h, but for few strains the mu was as high as 0.26 log OD/h. Results of this survey indicate that RTE vegetables may be vehicles of L. monocytogenes strains with limited variation in serotype, ribotype and virulence factors but varying significantly in resistance to chlorine disinfectants, capability of forming biofilm and growth rate. Data obtained is of foremost importance to serve as baseline for the development of scientific-based policies to control the incidence of L. monocytogenes in RTE vegetables in Brazil. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The reduction of the pelvic floor muscles (PFM) strength is a major cause of stress urinary incontinence (SUI). Objective: To compare active and passive forces, and vaginal cavity aperture in continent and stress urinary incontinent women. Method: The study included a total of thirty-two women, sixteen continent women (group 1 - G1) and sixteen women with SUI (group 2 - G2). To evaluate PFM passive and active forces in anteroposterior (sagittal plane) and left-right directions (frontal plane) a stainless steel specular dynamometer was used. Results: The anteroposterior active strength for the continent women (mean +/- standard deviation) (0.3 +/- 0.2 N) was greater compared to the values found in the evaluation of incontinent women (0.1 +/- 0.1 N). The left-right active strength (G1=0.43 +/- 0.1 N; G2=0.40 +/- 0.1 N), the passive force (G1=1.1 +/- 0.2 N; G2=1.1 +/- 0.3 N) and the vaginal cavity aperture (G1=21 +/- 3 mm; G2=24 +/- 4 mm) did not differ between groups 1 and 2. Conclusion: The function evaluation of PFM showed that women with SUI had a lower anteroposterior active strength compared to continent women.
Resumo:
Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.