987 resultados para Safety engineering.
Resumo:
The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.
Resumo:
Safety culture is a concept that has long been accepted in high risk industries such as aviation, nuclear industries and mining, however, considerable research is now being undertaken within the construction sector, with varying levels of success. The current paper discusses three recent interlocked projects that have had some success in the Australian construction industry. The first project examined the development and implementation of a safety competency framework targeted at safety critical positions across first tier construction organisations. Combining qualitative and quantitative methods, the project: developed a matrix of safety critical positions (n=11) and safety managements tasks (SMTs; n=39); mapped the process steps for their acquisition and ongoing development; detailed the knowledge, skills and behaviours required for all SMTs; and outlined organisational cultural outcomes that could be anticipated in a successful implementation of the framework. The second project extended research on safety competency and leadership to develop behavioural guidelines for leaders to drive safety culture change down to second tier companies. This was designed to assist smaller construction companies to customise their own competency framework and develop implementation guidelines that match their aspirations and resources. The third interlocked project explored the use of safety effectiveness indicators (SEIs) as an industry-relevant assessment tool for reducing risk on construction sites. With direct linkages to safety competencies and safety management tasks, the SEIs are the next step towards an integrated safety cultural approach to safety and extend the concept of positive performance indicators (PPIs) by providing a valid, reliable, and user friendly measurement platform. Taken together, the results of the interlocked projects suggest that safety culture research has many potential benefits for the construction industry, particularly when research is conducted in partnership with industry stakeholders. Suggestions are made for future research, including further application and testing of the safety competency framework and aligning SEIs across construction projects of varying size, location and design.
Resumo:
This study aimed to examine the effects on driving, usability and subjective workload of performing music selection tasks using a touch screen interface. Additionally, to explore whether the provision of visual and/or auditory feedback offers any performance and usability benefits. Thirty participants performed music selection tasks with a touch screen interface while driving. The interface provided four forms of feedback: no feedback, auditory feedback, visual feedback, and a combination of auditory and visual feedback. Performance on the music selection tasks significantly increased subjective workload and degraded performance on a range of driving measures including lane keeping variation and number of lane excursions. The provision of any form of feedback on the touch screen interface did not significantly affect driving performance, usability or subjective workload, but was preferred by users over no feedback. Overall, the results suggest that touch screens may not be a suitable input device for navigating scrollable lists.
Resumo:
The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.
Resumo:
New knowledge has raised a concern about the cost-ineffective design methods and the true performance of railroad prestressed concrete ties. Because of previous knowledge deficiencies, railway civil and track engineers have been aware of the conservative design methods for structural components in any railway track that rely on allowable stresses and material strength reductions. In particular, railway sleeper (or railroad tie) is an important component of railway tracks and is commonly made of prestressed concrete. The existing code for designing such components makes use of the permissible stress design concept, whereas the fiber stresses over cross sections at initial and final stages are limited by some empirical values. It is believed that the concrete ties complying with the permissible stress concept possess unduly untapped fracture toughness, based on a number of proven experiments and field data. Collaborative research run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete ties that were designed using the existing design code. The findings have led to the development of a new limit-states design concept. This paper highlights the conventional and the new limit-states design philosophies and their implication to both the railway community and the public. © 2011 American Society of Civil Engineers.
Resumo:
This paper reports one aspect of a study of 28 young adults (18–26 years) engaging with the uncertain (contested) science of a television news report about recent research into mobile phone health risks. The aim of the study was to examine these young people’s ‘accounts of scientific knowledge’ in this context. Seven groups of friends responded to the news report, initially in focus group discussions. Later in semi-structured interviews they elaborated their understanding of the nature of science through their explanations of the scientists’ disagreement and described their mobile phone safety risk assessments. This paper presents their accounts in terms of their views of the nature of science and their concept understanding. Discussions were audio-recorded then analysed by coding the talk in terms of issues raised, which were grouped into themes and interpreted in terms of a moderate social constructionist theoretical framing. In this context, most participants expressed a ‘common sense’ view of the nature of science, describing it as an atheoretical, technical procedure of scientists testing their personal opinions on the issue, subject to the influence of funding sponsors. The roles of theory and data interpretation were largely ignored. It is argued that the nature of science understanding is crucial to engagement with contemporary socioscientific issues, particularly the roles of argumentation, theory, data interpretation, and the distinction of science from common sense. Implications for school science relate primarily to nature of science teaching and the inclusion of socioscientific issues in school science curricula. Future research directions are considered.
Resumo:
Overview: What we currently know - content design and evaluation The direct role (persuasive effects) of advertising Review of some key findings within a conceptual framework of the persuasive process Definitional inconsistencies, methodological limitations, & gaps in existing knowledge Suggested issues/directions for future advertising research
Resumo:
1. Overview of hotspot identification (HSID)methods 2. Challenges with HSID 3. Bringing crash severity into the ‘mix’ 4. Case Study: Truck Involved Crashes in Arizona 5. Conclusions • Heavy duty trucks have different performance envelopes than passenger cars and have more difficulty weaving, accelerating, and braking • Passenger vehicles have extremely limited sight distance around trucks • Lane and shoulder widths affect truck crash risk more than passenger cars • Using PDOEs to model truck crashes results in a different set of locations to examine for possible engineering and behavioral problems • PDOE models point to higher societal cost locations, whereas frequency models point to higher crash frequency locations • PDOE models are less sensitive to unreported crashes • PDOE models are a great complement to existing practice
Resumo:
Transport and Storage Sector - Identified as one of 4 primary targets in the National Occupational Health and Safety Strategy 2002-2012 (NOHSS) The Heavy Vehicle Industry -80% of the freight task -29% of the employees in Transport and Storage 5 years on: -Transport and Storage - 22% reduction -Heavy Vehicle Industry - only an 11% reduction Intervention strategies that aren’t targeted to a specific audience may have differing levels of success due to cultural beliefs and values (McLeroy et al., 1994) Research Goal: - To explore the influence of culture on safety in the heavy vehicle industry
Resumo:
Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity and maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components (Boothroyd, Dewhurst and Knight, 2002), which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. Although DFM has been a well established methodology for about 30 years, a Fraunhofer IAO study from 2009 found that DFM was still one of the key challenges of the German Manufacturing Industry. A new, knowledge based approach to DFM, eliminating steps of DFM, was introduced in Paul and Al-Dirini (2009). The concept focuses on a concurrent engineering process between the manufacturing engineering and product development systems, while current product realization cycles depend on a rigorous back-and-forth examine-and-correct approach so as to ensure compatibility of any proposed design to the DFM rules and guidelines adopted by the company. The key to achieving reductions is to incorporate DFM considerations into the early stages of the design process. A case study for DFM application in an automotive powertrain engineering environment is presented. It is argued that a DFM database needs to be interfaced to the CAD/CAM software, which will restrict designers to the DFM criteria. Consequently, a notable reduction of development cycles can be achieved. The case study is following the hypothesis that current DFM methods do not improve product design in a manner claimed by the DFM method. The critical case was to identify DFA/DFM recommendations or program actions with repeated appearance in different sources. Repetitive DFM measures are identified, analyzed and it is shown how a modified DFM process can mitigate a non-fully integrated DFM approach.
Resumo:
Safety psychology and workplace safety Commitment, Motivational and attitudinal components of safety Leadership Group Dynamics and Group Change Case Study from Construction
Resumo:
As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.