932 resultados para PYROLYTIC-GRAPHITE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel material for electrochemical biosensing based on rigid conducting gold nanocomposite (nano-AuGEC) is presented. Islands of chemisorbing material (gold nanoparticles) surrounded by nonreactive, rigid, and conducting graphite epoxy composite are thus achieved to avoid the stringent control of surface coverage parameters required during immobilization of thiolated oligos in continuous gold surfaces. The spatial resolution of the immobilized thiolated DNA was easily controlled by merely varying the percentage of gold nanoparticles in the composition of the composite. As low as 9 fmol (60 pM) of synthetic DNA were detected in hybridization experiments when using a thiolated probe. Moreover, for the first time a double tagging PCR strategy was performed with a thiolated primer for the detection of Salmonella sp., one of the most important foodborne pathogens affecting food safety. Ibis assay was performed by double-labeling the amplicon during the PCR with a -DIG and -SH set of labeled primers. The thiolated end allows the immobilization of the amplicon on the nano-AuGEC electrode, while digoxigenin allows the electrochemical detection with the antiDIG-HRP reporter in the femtomole range. Rigid conducting gold nanocomposite represents a good material for the improved and oriented immobilization of biomolecules with excellent transducing properties for the construction of a wide range of electrochemical biosensors such as immunosensors, genosensors, and enzymosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractional factorial design and factorial with center point design were applied to the development of an amperometric biosensor for the detection of the hepatitis C virus. Biomolecules were immobilized by adsorption on graphite electrodes modified with siloxane-poly(propyleneoxide) hybrid matrix prepared using the sol-gel method. Several parameters were optimized, such as the streptavidin concentration at 0.01 mg mL(-1) and 1.0% bovine serum albumin, the incubation time of the electrodes in the complementary DNA solution for 30 minutes and a 1: 1500 dilution of the avidin-peroxidase conjugate, among others. The application of chemometric studies has been efficient, since the best conditions have been established with a restricted number of experiments, indicating the influence of different factors on the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)