934 resultados para PROBABILISTIC TELEPORTATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoertical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically andbiologically. We suggest a more capable abstraction of the clonal selection principle grounded in probabilistic estimation and approximation and demonstrate how it addresses some of the shortcomings in existing algorithms. We further show that by recasting black-box optimisation as a learning problem, the same abstraction may be re-employed; thereby taking steps toward unifying the clonal selection principle and distinguishing it from natural selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heavy drinkers in Scotland may consume 1600 g ethanol per week. Due to its low price, cider may be preferred over other beverages. Anecdotal evidence has linked cider to specific health hazards beyond other alcoholic beverages. To examine this hypothesis, nine apple and pear cider samples were chemically analysed for constituents and contaminants. None of the products exceeded regulatory or toxicological thresholds, but the regular occurrence of acetaldehyde in cider was detected. To provide a quantitative risk assessment, two collectives of exclusive drinkers of cider and vodka were compared and the intake of acetaldehyde was estimated using probabilistic MonteeCarlo type analysis. The cider consumers were found to ingest more than 200-times the amount of acetaldehyde consumed by vodka consumers. The margins of exposure (MOE) of acetaldehyde were 224 for the cider and over 220,000 for vodka consumers. However, if the effects of ethanol were considered in a cumulative assessment of the combined MOE, the effect of acetaldehyde was minor and the combined MOE for both groups was 0.3. We suggest that alcohol policy priority should be given on reducing ethanol intake by measures such as minimum pricing, rather than to focus on acetaldehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ramlogan, R.,& Tedd, L. (2006). Use and non-use of electronic information sources by undergraduates at the University of the West Indies. Online Information Review, 30(1), 24-42.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J. Keppens and Q. Shen. Causality enabled compositional modelling of Bayesian networks. Proceedings of the 18th International Workshop on Qualitative Reasoning, pages 33-40, 2004.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências da Comunicação, especialização em Marketing e Publicidade

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos de obtenção do grau de Mestre em Ciências da Comunicação, ramo de Marketing e Publicidade

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Universidade Fernando Pessoa, como parte dos requisitos para a obtenção do grau de Mestre em Psicologia Jurídica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências da Educação: Educação Especial, área de especialização em Domínio Cognitivo e Motor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions.RESULTS:We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.CONCLUSION:A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor) and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased positive predictive value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on a collection of new annotations recently added to GO confirms the advantages suggested by the cross-validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein function prediction, that exploits the ontological structure of protein annotation databases in a principled manner, can offer substantial advantages over the successive application of 'flat' network-based methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA employs a set of several forward mapping functions that are estimated automatically from training data. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). The SMA can model ambiguous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping functions generate a set of output hypotheses for a given input via a statistical inference procedure. The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-Maximization algorithm for simultaneous learning of the specialized domains along with the mapping functions, and approximate strategies for inference. The framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes from a single image. The accuracy and stability of the SMA are also tested using synthetic images of human bodies and hands, where ground truth is known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We leverage the buffering capabilities of end-systems to achieve scalable, asynchronous delivery of streams in a peer-to-peer environment. Unlike existing cache-and-relay schemes, we propose a distributed prefetching protocol where peers prefetch and store portions of the streaming media ahead of their playout time, thus not only turning themselves to possible sources for other peers but their prefetched data can allow them to overcome the departure of their source-peer. This stands in sharp contrast to existing cache-and-relay schemes where the departure of the source-peer forces its peer children to go the original server, thus disrupting their service and increasing server and network load. Through mathematical analysis and simulations, we show the effectiveness of maintaining such asynchronous multicasts from several source-peers to other children peers, and the efficacy of prefetching in the face of peer departures. We confirm the scalability of our dPAM protocol as it is shown to significantly reduce server load.