993 resultados para Nano VO2 thin films
Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films
Resumo:
Narrow bandwidth red electroluminescence from OLED devices fabricated using a simple solution-based approach is demonstrated. A spin-casting method is employed to fabricate organic light emitting diode (OLED) devices comprising a poly(N-vinylcarbazole) (PVK) host matrix doped with a europium beta-diketonate complex, Eu(dbM)(3)(Phen) (dibenzoylmethanate, dbm; 1,10-phenanthroline, Phen) on glass/ indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Saturated red europium ion emission, based on the (5)Do ->F-7(2) transition, is centered at a wavelength of 612 nm with a full width at half maximum of 3.5 rim. A maximum external quantum efficiency of 6.3 x 10(-2) cd/A (3.1 X 10(-2)%) and a maximum luminance of 130 cd/M-2 at 400 mA/cm(2) and 25 V is measured for ITO/PEDOT/PVK:Eu(dbM)3(Phen)/Ca/Al devices. This measured output luminance is comparable to that of devices fabricated using more sophisticated small molecule evaporation techniques. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Scanning tunnelling microscope (STM) tip-induced light emission from Au and Ag has been studied. Thin film samples similar to100nm thick were prepared by thermal evaporation at 0.5nm/s onto a room-temperature glass substrate to produce grains of 20-50nm in lateral dimension at the surface. Light emission from the samples in the STM was quasi-simultaneously recorded with the topography, at 1.8V tip bias and 3-40nA current, alternating pixel by pixel at the same bias. Typically, a surface scan range of 150 nm x 150 nm was surveyed. Au, W and PtIr tips were used.
Resumo:
Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x = 0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform with out microcracks . The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size in dependent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11GHz as cobalt content increased from x = 0.1 to 0.2.
Resumo:
The kinetics of the liquid-phase hydrogenation of citral (3,7-dimethyl-2,6-octadienal) on Au/TiO2 and Pt-Sn/TiO2 thin films was studied in the temperature range 313-353 K and citral concentrations of 0.25-10.0 mol m(-3). The thin films were deposited onto the inner walls of silica capillaries with internal diameter of 250 mu m. First-order dependence on hydrogen pressure and near zero order dependence on citral concentration were observed for the initial rate of citral hydrogenation over the Pt-Sn/TiO2 and Au/TiO2 thin films. The Au/TiO2 catalyst prevents citronellal formation. The highest yield of unsaturated alcohols was obtained on the Pt-Sn/TiO2 film at a reaction temperature of 343 K, liquid residence time of 30 min and a citral conversion of 99%. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.
Resumo:
A one-pot sol-gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt50Sn50 and Pt90Sn10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt90Sn10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu5Sn nanoparticles supported by impregnation onto mesoporous silica films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ethanol adsorption-desorption isotherms on well-organized mesoporous silica and titania films with hexagonal pores structure were studied by ellipsometric porosimetry. The mesopore volume Was calculated from the change of the effective refractive index at the end points of the isotherm. An improved Derjaguin-Broekhoff-de Boer (IDBdB) model for cylindrical pores is proposed for the determination of the pore size. In this model, the disjoining pressure isotherms were obtained by measuring the thickness of the ethanol film on a non-porous film with the same chemical composition. This approach eliminates uncertainties related to the application of the statistical film thickness determined via t-plots in previous versions of the DBdB model. The deviation in the surface tension of ethanol in the mesopores from that of a flat interface was described by the Tolman parameter in the Gibbs-Tolman-Koening-Buff equation. A positive value of the Tolman parameter of 0.2 nm was found from the fitting of the desorption branch of the isotherms to the experimental data obtained by Low Angle X-ray Diffraction (LA-XRD) and Transmission Electron Microscopy (TEM) measurements in the range of pore diameters between 2.1 and 8.3 nm. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 degrees C were used for all depositions, with varying deposition times of 5-60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo-oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was approximate to 200 nm, and that a platinum coating on the reverse of such samples leads to a five-fold increase in the observed rate of water oxidation.
Resumo:
Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.