868 resultados para Muscle-activity
Resumo:
PURPOSE: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. METHODS: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. RESULTS: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. CONCLUSION: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
O ácido graxo (AG) é uma importante fonte de energia para o músculo esquelético. Durante o exercício sua mobilização é aumentada para suprir as necessidades da musculatura ativa. Acredita-se que diversos pontos de regulação atuem no controle da oxidação dos AG, sendo o principal a atividade do complexo carnitina palmitoil transferase (CPT), entre os quais três componentes estão envolvidos: a CPT I, a CPT II e carnitina acilcarnitina translocase. A função da CPT I durante o exercício físico é controlar a entrada de AG para o interior da mitocôndria, para posterior oxidação do AG e produção de energia. Em resposta ao treinamento físico há um aumento na atividade e expressão da CPT I no músculo esquelético. Devido sua grande importância no metabolismo de lipídios, os mecanismos que controlam sua atividade e sua expressão gênica são revisados no presente estudo. Reguladores da expressão gênica de proteínas envolvidas no metabolismo de lipídios no músculo esquelético, os receptores ativados por proliferadores de peroxissomas (PPAR) alfa e beta, são discutidos com um enfoque na resposta ao treinamento físico.
Resumo:
The effect of S,S-ethylenediaminedisuccinic acid (edds) on the quenching of metal-catalyzed (metal = Mn, Fe, Co, Ni, Cu, Zn) oxidation of ascorbic acid was tested in vitro via oxidation of the fluorescent probe 1,2,3-dihydrorhodamine dihydrochloride. The pro-oxidant activity of iron was not fully suppressed, even at a four-fold molar excess of the ligand. The effect of serum on the toxicity to peripheral blood mononuclear cells (PBMC) and K562 cells was investigated. The cytotoxic effect of Fe-edds was abrogated in the presence of Trolox or serum proteins. The probable pathways of cell toxicity were investigated through blocking of the monocarboxylate transporters (MCT) in association with cell cycle studies by flow cytometry. Cells treated with metal complexes and alpha-cyano-4-hydroxycinnamic acid, a known MCT inhibitor, showed recovery of viability, suggesting that MCT proteins may be involved in the internalization of metal-edds complexes. The free acid induced cell cycle arrest in G0/G1 (PBMC) and S (K562) phases, suggesting direct DNA damage or interference in DNA replication.
Resumo:
To determine the effects of saturated and unsaturated fatty acids in phosphatidylcholine (PC) on macrophage activity, peritoneal lavage cells were cultured in the presence of phosphatidylcholine rich in saturated or unsaturated fatty acids (sat PC and unsat PC, respectively), both used at concentrations of 32 and 64 µM. The treatment of peritoneal macrophages with 64 µM unsat PC increased the production of hydrogen peroxide by 48.3% compared to control (148.3 ± 16.3 vs 100.0 ± 1.8%, N = 15), and both doses of unsat PC increased adhesion capacity by nearly 50%. Moreover, 64 µM unsat PC decreased neutral red uptake by lysosomes by 32.5% compared to the untreated group (67.5 ± 6.8 vs 100.0 ± 5.5%, N = 15), while both 32 and 64 µM unsat PC decreased the production of lipopolysaccharide-elicited nitric oxide by 30.4% (13.5 ± 2.6 vs 19.4 ± 2.5 µM) and 46.4% (10.4 ± 3.1 vs 19.4 ± 2.5 µM), respectively. Unsat PC did not affect anion production in non-stimulated cells or phagocytosis of unopsonized zymosan particles. A different result pattern was obtained for macrophages treated with sat PC. Phorbol 12-miristate 13-acetate-elicited superoxide production and neutral red uptake were decreased by nearly 25% by 32 and 64 µM sat PC, respectively. Sat PC did not affect nitric oxide or hydrogen peroxide production, adhesion capacity or zymosan phagocytosis. Thus, PC modifies macrophage activity, but this effect depends on cell activation state, fatty acid saturation and esterification to PC molecule and PC concentration. Taken together, these results indicate that the fatty acid moiety of PC modulates macrophage activity and, consequently, is likely to affect immune system regulation in vivo.
Resumo:
As a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), Gram-positive and Gram-negative bacterial isolates were collected from 33 centers in Latin America (centers in Argentina, Brazil, Chile, Colombia, Guatemala, Honduras, Jamaica, Mexico, Panama, Puerto Rico, and Venezuela) from January 2004 to September 2007. Argentina and Mexico were the greatest contributors of isolates to this study. Susceptibilities were determined according to Clinical Laboratory Standards Institute guidelines. Resistance levels were high for most key organisms across Latin America: 48.3% of Staphylococcus aureus isolates were methicillin-resistant while 21.4% of Acinetobacter spp. isolates were imipenem-resistant. Extended-spectrum β-lactamase were reported in 36.7% of Klebsiella pneumoniae and 20.8% of E. coli isolates. Tigecycline was the most active agent against Gram-positive isolates. Tigecycline was also highly active against all Gram-negative organisms, with the exception of Pseuodomonas aeruginosa, against which piperacillin-tazobactam was the most active agent tested (79.3% of isolates susceptible). The in vitro activity of tigecycline against both Gram-positive and Gram-negative isolates indicates that it may be an useful tool for the treatment of nosocomial infections, even those caused by organisms that are resistant to other antibacterial agents.
Resumo:
Croton celtidifolius Baill is a tree found in the Atlantic Forest South of Brazil, mainly in Santa Catarina. The bark and leaf infusions of this medicinal plant have been popularly used for the treatment of inflammatory diseases. The anti-aggregant activity of C. celtidifolius crude extract (CE) and the column chromatography (CC) isolated compounds flavonoids, catechin and gallocatechin were evaluated in human blood platelets. The platelet-rich plasma (PRP) was incubated with different concentrations of flavonóides (50 - 200 µg/mL) to be tested before platelet aggregation was induced by the agonists adenosine 5'diphosphate (ADP) and collagen. At 200 µg/mL the CE, catechin and gallocatechin markedly inhibited platelet aggregation with the aggregant agents. Using ATP production as an index of platelet secretory capacity, we observed a decreased production of ATP in platelets treated with flavonoids when stimulated by collagen. On the other hand, the flavonoids did not promote inhibitory effect on prothrombin time (PT), thromboplastin time (APTT) and thrombin time (TT). In conclusion, these observations suggest that C. celtidifolius is likely to exert an inhibitory action on platelets in vitro by suppressing secretion and platelet aggregation.
Resumo:
A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.
Resumo:
The antioxidant activity of sugarcane (Saccharum officinarum L.) juice towards DPPH reagent was determined (EC50) and the main compounds with radical scavenging activity in juice and leaves extracts were identified by HPLC-UV/PAD analysis combined with HPLC microfractionation monitored by TLC using β-carotene and DPPH as the detection reagents. In sugarcane leaves, luteolin-8-C-(rhamnosylglucoside) (1) was the most important compound with radical scavenging activity; in sugarcane juice, the flavones diosmetin-8-C-glucoside (2), vitexin (3) schaftoside (9), isoschaftoside (10) and 4',5'-dimethyl-luteolin-8-C-glucoside (11) were the most relevant compounds. The content of juice flavonoids (0.241 ± 0.001 mg total flavonoids/mL juice), comparable to other food sources of flavonoids, suggest the potential of sugarcane as a dietary source of natural antioxidants. However, the low antioxidant ability of sugarcane juice (EC50 = 100.2 ± 2.6 g L-1) also points to the need for further studies about the dietary intake of sugarcane flavonoids and its effects on human health.
Resumo:
The essential oil of the leaves from Annona coriacea Mart., Annonaceae, was extracted by hydrodistillation in a Clevenger apparatus and analyzed by GC/MS and GC/FID. The oil yield was 0.05% m/m. Sixty compounds were identified, in a complex mixture of sesquiterpenes (76.7%), monoterpenes (20.0%) and other constituents (3.3%). Bicyclogermacrene was its major compound (39.8%) followed by other sesquiterpenes. Most of the monoterpenes were in low concentration (<1%). Only β-pinene and pseudolimonene presented the highest level of 1.6%. The volatile oil presented anti-leishmanial and trypanocidal activity against promastigotes of four species of Leishmania and trypomastigotes of Trypanosoma cruzi, showing to be more active against Leishmania (L.) chagasi (IC50 39.93 µ g/mL) (95% CI 28.00-56.95 µ g/mL).
Resumo:
The chemical composition of volatile oils from two Myrtaceae species, Myrceugenia myrcioidesand Eugenia riedeliana, both native from the Brazilian Atlantic Rain Forest, was analyzed by GC-MS. Acetylcholinesterase inhibitory activity was colorimetrically evaluated for these oils. For M. myrcioides, monoterpene hydrocarbons represented the major class in the volatile oil, with α-pinene as the most abundant component and a weak inhibitory activity was observed, whilst for E. riedeliana sesquiterpenes were found in higher amounts, being valerianol the major compound, and this oil presented a strong acetylcholinesterase inhibition.