999 resultados para Multi-radio
Resumo:
The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.
Resumo:
Cognitive radio networks sense spectrum occupancy and manage themselvesto operate in unused bands without disturbing licensed users. The detection capability of aradio system can be enhanced if the sensing process is performed jointly by a group of nodesso that the effects of wireless fading and shadowing can be minimized. However, taking acollaborative approach poses new security threats to the system as nodes can report falsesensing data to reach a wrong decision. This paper makes a review of secure cooperativespectrum sensing in cognitive radio networks. The main objective of these protocols is toprovide an accurate resolution about the availability of some spectrum channels, ensuring thecontribution from incapable users as well as malicious ones is discarded. Issues, advantagesand disadvantages of such protocols are investigated and summarized.
Resumo:
In the last two decades of studying the Solar Energetic Particle (SEP) phenomenon, intensive emphasis has been put on how and when and where these SEPs are injected into interplanetary space. It is well known that SEPs are related to solar flares and CMEs. However, the role of each in the acceleration of SEPs has been under debate since the major role was taken from flares ascribed to CMEs step by step after the skylab mission, which started the era of CME spaceborn observations. Since then, the shock wave generated by powerful CMEs in between 2-5 solar radii is considered the major accelerator. The current paradigm interprets the prolonged proton intensity-time profile in gradual SEP events as a direct effect of accelerated SEPs by shock wave propagating in the interplanetary medium. Thus the powerful CME is thought of as a starter for the acceleration and its shock wave as a continuing accelerator to result in such an intensity-time profile. Generally it is believed that a single powerful CME which might or might not be associated with a flare is always the reason behind such gradual events.
In this work we use the Energetic and Relativistic Nucleus and Electrons ERNE instrument on board Solar and Heliospheric Observatory SOHO to present an empirical study to show the possibility of multiple accelerations in SEP events. In the beginning we found 18 double-peaked SEP events by examining 88 SEP events. The peaks in the intensity-time profile were separated by 3-24 hours. We divided the SEP events according to possible multiple acceleration into four groups and in one of these groups we find evidence for multiple acceleration in velocity dispersion and change in the abundance ratio associated at transition to the second peak. Then we explored the intensity-time profiles of all SEP events during solar cycle 23 and found that most of the SEP events are associated with multiple eruptions at the Sun and we call those events as Multi-Eruption Solar Energetic Particles (MESEP) events. We use the data available by Large Angle and Spectrometric Coronograph LASCO on board SOHO to determine the CME associated with such events and YOHKOH and GOES satellites data to determine the flare associated with such events. We found four types of MESEP according to the appearance of the peaks in the intensity-time profile in large variation of energy levels. We found that it is not possible to determine whether the peaks are related to an eruption at the Sun or not, only by examining the anisotropy flux, He/p ratio and velocity dispersion. Then we chose a rare event in which there is evidence of SEP acceleration from behind previous CME. This work resulted in a conclusion which is inconsistent with the current SEP paradigm. Then we discovered through examining another MESEP event, that energetic particles accelerated by a second CME can penetrate a previous CME-driven decelerating shock. Finally, we report the previous two MESEP events with new two events and find a common basis for second CME SEPs penetrating previous decelerating shocks. This phenomenon is reported for the first time and expected to have significant impact on modification of the current paradigm of the solar energetic particle events.
Resumo:
Extracts obtained from 57 marine-derived fungal strains were analyzed by HPLC-PDA, TLC and ¹H NMR. The analyses showed that the growth conditions affected the chemical profile of crude extracts. Furthermore, the majority of fungal strains which produced either bioactive of chemically distinctive crude extracts have been isolated from sediments or marine algae. The chemical investigation of the antimycobacterial and cytotoxic crude extract obtained from two strains of the fungus Beauveria felina have yielded cyclodepsipeptides related to destruxins. The present approach constitutes a valuable tool for the selection of fungal strains that produce chemically interesting or biologically active secondary metabolites.
Resumo:
This paper present an overview of way covered for the spectrometry of atomic absorption (AAS), tracing a line of the historical events in its development and its establishment as a multielement technique. Additionally, the efforts carried by through several researchers in the search for the instrumental evolution, the advances, advantages, limitations, and trends of this approach are related. Several works focusing its analytical applications are cited employing simultaneous multielement determination by flame (FAAS) and/or graphite furnace (GF AAS), and fast sequential multielement determination using FAAS are reported in the present review.
Resumo:
The model of Questions Answering (Q&A) for eLearning is based on collaborative learning through questions that are posed by students and their answers to that questions which are given by peers, in contrast with the classical model in which students ask questions to the teacher only. In this proposal we extend the Q&A model including the social presence concept and a quantitative measure of it is proposed; besides it is considered the evolution of the resulting Q&A social network after the inclusion of the social presence and taking into account the feedback on questions posed by students and answered by peers. The social network behaviorwas simulated using a Multi-Agent System to compare the proposed social presence model with the classical and the Q&A models
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.
Resumo:
We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics.
Resumo:
An experiment conducted in the field the action of mancozeb, a fungicide of multi-site action was tested, to control soybean rust caused by Phakopsora pachyrhizi. Its performance was compared to that of the mixture cyproconazole (DMI) + azoxystrobin (QoI). The soybean cultivar NA 7337 RR was used with a population of 400,000 plants/ha cultivated in 20m2 plots. Treatments consisted of mancozeb levels (1.5 and 2.0 kg/ha) applied four, six and eight times. The DMI + QoI mixture was applied three times at 0.3 L/ha + Nimbus. Rust severity was assessed six times in the plots and data were integrated as the area under the disease progress curve (AUDPC). The plots were harvested and grain yield was expressed as kg/ha. Data on AUDPC and yield were subjected to analysis of variance and means compared according to Turkey's test (p = 0.005). Treatments with mancozeb were superior to DMI + QoI mixture both for rust control and grain yield. Four applications of 2.0 k/ha mancozeb were more efficient than three applications of the mixture used as standard. Mancozeb has the potential to be added to fungicide mixtures in the establishment of soybean rust anti-resistance strategy.
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
Tämän pro gradu-tutkimuksen tarkoituksena oli tutkia monen toimijan sosiaalipalvelukehittäjäverkoston toimivuutta ja sen toimivuuteen vaikuttavia tekijöitä. Aihetta lähestyttiin erilaisten teoreettisten kokonaisuuksien kautta, joiden avulla saatiin luotua tutkimukselle pohja. Viitekehys tutkimukselle luotiin yhdistäen erilaisia teoreettisia aihealueita verkostoista, verkostojen johtamisesta ja palveluista. Tutkimuksessa korostuu motivaation, yhteisen, tarpeeseen perustuvan tavoitteen, sitoutumisen ja orkestroinnin merkitys verkostotoiminnassa hyvän lopputuloksen aikaansaamiseksi. Tutkimuksen empiirisessä osuudessa tehty kvalitatiivinen case-tutkimus keskittyy tiettyyn verkostoon, joka on Socomin koordinoimana kehittänyt Kaakkois-Suomen alueelle uudenlaista sosiaalipalvelua liittyen henkilökohtaiseen apuun. Verkosto on monen toimijan verkosto, jonka jäsenet edustavat erilaisia tahoja ja organisaatioita. Tutkimuksen perusteella verkosto on toiminut hyvin ja tehokkaasti ja saanut luotua toimivan sosiaalipalvelun. Verkosto tukee kirjallisuuskatsauksessa löydettyjen tekijöiden, kuten verkosto-orkestroinnin, sitoutumisen ja yhteisen päämäärän, vaikutusta verkoston toimintaan ja lopputulokseen.
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.