951 resultados para Mixed-integer linear programming
Resumo:
For every possible spectrum of 2(N)-dimensional density operators, we construct an N-qubit X-state of the same spectrum and maximal genuine multipartite (GM-) concurrence, hence characterizing a global unitary transformation that -constrained to output X-states-maximizes the GM-concurrence of an arbitrary input mixed state of N qubits. We also apply semidefinite programming methods to obtain N-qubit X-states with maximal GM-concurrence for a given purity and to provide an alternative proof of optimality of a recently proposed set of density matrices for the purpose, the so-called X-MEMS. Furthermore, we introduce a numerical strategy to tailor a quantum operation that converts between any two given density matrices using a relatively small number of Kraus operators. We apply our strategy to design short operator-sum representations for the transformation between any given N-qubit mixed state and a corresponding X-MEMS of the same purity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to compare linear and nonlinear programming models for feed formulation, for maximum profit, considering the real variation in the prices of the corn, soybean meal and broilers during the period from January of 2008 to October of 2009, in the São Paulo State, Brazil. For the nonlinear formulation model, it was considered the following scenarios of prices: a) the minimum broiler price and the maximum prices of the corn and soybean meal during the period, b) the mean prices of the broiler, corn and soybean meal in the period and c) the maximum broiler price and the minimum prices of the corn and soybean meal, in the considered period; while for the linear formulation model, it was considered just the prices of the corn and the soybean. It was used the Practical Program for Feed Formulation 2.0 for the diets establishment. A total of 300 Cobb male chicks were randomly assigned to the 4 dietary treatments with 5 replicate pens of 15 chicks each. The birds were fed with a starter diet until 21 d and a grower diet from 22 to 42 d of age, and they had ad libitum access to feed and water, on floor with wood shavings as litter. The broilers were raised in an environmentally-controlled house. Body weight, body weight gain, feed intake, feed conversion ratio and profitability (related to the prices variation of the broilers and ingredients) were obtained at 42 d of age. It was found that the broilers fed with the diet formulated with the linear model presented the lowest feed intake and feed conversion ratio as compared with the broilers fed with diets from nonlinear formulation models. There were no significant differences in body weight and body weight gain among the treatments. Nevertheless, the profitabilities of the diets from the nonlinear model were significantly higher than that one from the linear formulation model, when the corn and soybean meal prices were near or below their average values for the studied period, for any broiler chicken price.
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
The level of improvement in the audiological results of Baha(®) users mainly depends on the patient's preoperative hearing thresholds and the type of Baha sound processor used. This investigation shows correlations between the preoperative hearing threshold and postoperative aided thresholds and audiological results in speech understanding in quiet of 84 Baha users with unilateral conductive hearing loss, bilateral conductive hearing loss and bilateral mixed hearing loss. Secondly, speech understanding in noise of 26 Baha users with different Baha sound processors (Compact, Divino, and BP100) is investigated. Linear regression between aided sound field thresholds and bone conduction (BC) thresholds of the better ear shows highest correlation coefficients and the steepest slope. Differences between better BC thresholds and aided sound field thresholds are smallest for mid-frequencies (1 and 2 kHz) and become larger at 0.5 and 4 kHz. For Baha users, the gain in speech recognition in quiet can be expected to lie in the order of magnitude of the gain in their hearing threshold. Compared to its predecessor sound processors Baha(®) Compact and Baha(®) Divino, Baha(®) BP100 improves speech understanding in noise significantly by +0.9 to +4.6 dB signal-to-noise ratio, depending on the setting and the use of directional microphone. For Baha users with unilateral and bilateral conductive hearing loss and bilateral mixed hearing loss, audiological results in aided sound field thresholds can be estimated with the better BC hearing threshold. The benefit in speech understanding in quiet can be expected to be similar to the gain in their sound field hearing threshold. The most recent technology of Baha sound processor improves speech understanding in noise by an order of magnitude that is well perceived by users and which can be very useful in everyday life.
Resumo:
Higher education has a responsibility to educate a democratic citizenry and recent research indicates civic engagement is on the decline in the United States. Through a mixed methodological approach, I demonstrate that the potential exists for well structured short-term international service-learning programming to develop college students’ civic identities. Quantitative analysis of questionnaire data, collected from American college students immediately prior to their participation in a short-term service-learning experience in Northern Ireland and again upon their return to the United States, revealed increases in civic accountability, political efficacy, justice oriented citizenship, and service-learning. Subsequent qualitative analysis of interview transcripts, student journals, and field notes suggested that facilitated critical reflection before, during, and after the experience promoted transformational learning. Emergent themes included: (a) responsibilities to others, (b) the value of international service-learning, (c) crosspollination of ideas, (d) stepping outside the daily routine to facilitate divergent thinking, and (e) the necessity of precursory thinking for sustaining transformations in thinking. The first theme, responsibilities to others, was further divided into subthemes of thinking beyond oneself, raising awareness of responsibility to others, and voting responsibly.
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.
Resumo:
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.
Resumo:
In the simultaneous estimation of a large number of related quantities, multilevel models provide a formal mechanism for efficiently making use of the ensemble of information for deriving individual estimates. In this article we investigate the ability of the likelihood to identify the relationship between signal and noise in multilevel linear mixed models. Specifically, we consider the ability of the likelihood to diagnose conjugacy or independence between the signals and noises. Our work was motivated by the analysis of data from high-throughput experiments in genomics. The proposed model leads to a more flexible family. However, we further demonstrate that adequately capitalizing on the benefits of a well fitting fully-specified likelihood in the terms of gene ranking is difficult.