Posterior Simulation in the Generalized Linear Model with Semiparmetric Random Effects
Data(s) |
25/05/2006
|
---|---|
Resumo |
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler. |
Formato |
application/pdf |
Identificador |
http://biostats.bepress.com/harvardbiostat/paper42 http://biostats.bepress.com/cgi/viewcontent.cgi?article=1045&context=harvardbiostat |
Publicador |
Collection of Biostatistics Research Archive |
Fonte |
Harvard University Biostatistics Working Paper Series |
Palavras-Chave | #Biostatistics #Numerical Analysis and Computation |
Tipo |
text |