920 resultados para Methods Time Measurement (MTM)
Resumo:
Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.
Resumo:
Background Longer breastfeeding duration appears to have a protective effect against childhood obesity. This effect may be partially mediated by maternal feeding practices during the first years of life. However, the few studies that have examined links between breastfeeding duration and subsequent feeding practices have yielded conflicting results. Objective Using a large sample of first-time mothers and a newly validated, comprehensive measure of maternal feeding (the Feeding Practices and Structure Questionnaire1), this study examined associations between breastfeeding duration and maternal feeding practices at child age 24 months. Methods Mothers (n = 458) enrolled in the NOURISH trial2 provided data on breastfeeding at child age 4, 14 and 24 months, and on feeding practices at 24 months. Structural Equation Modelling was used to examine associations between breastfeeding duration and five non-responsive and four structure-related ‘authoritative’ feeding practices, adjusting for a range of maternal and child characteristics. Results The model showed acceptable fit (χ2/df = 1.68; RMSEA = .04, CFI = .91 and TLI = .89) and longer breastfeeding duration was negatively associated with four out of five non-responsive feeding practices and positively associated with three out of four structure-related feeding practices. Overall, these results suggest that mothers who breastfeed longer reported using more appropriate feeding practices. Conclusion These data demonstrate an association between longer breastfeeding duration and authoritative feeding practices characterised by responsiveness and structure, which may partly account for the apparent protective effect of breastfeeding on childhood obesity.
Resumo:
Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.
Resumo:
This paper presents real-time simulation models of electrical machines on FPGA platform. Implementation of the real-time numerical integration methods with digital logic elements is discussed. Several numerical integrations are presented. A real-time simulation of DC machine is carried out on this FPGA platform and important transient results are presented. These results are compared to simulation results obtained through a commercial off-line simulation software.
Resumo:
Arterial mechanical property may be a potential variable for risk stratification. Large artery and central arterial compliance have been shown not only to correlate well with overall cardiovascular outcome in large epidemiological studies [1, 2] but also to correlate with coronary atherosclerotic burden as measured by conventional angiography [3]. Until recently, real-time B-mode ultrasound combined with simultaneous blood pressure measurements have been used to assess large artery compliance [4]. These techniques have an excellent temporal resolution but are unable to provide adequate spatial resolution to determine changes in vessel area as opposed to diameter and make the assumption that the vessel is perfectly round. Attempts to use MR imaging to measure large artery compliance have been published previously [5]. However, they have not utilised simultaneous blood pressure measurements during sequence acquisition. We report a technique using regular and simultaneous blood pressure measurement during 2 dimensional phase contrast magnetic resonance imaging 2DPC-MRI to determine local carotid compliance.
Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap
Resumo:
Eleven carotid atherothrombotic plaque samples were harvested from patients. Three samples that were highly calcified were discarded, while eight yielded results. The elastic properties of the material were estimated by fitting the measured indentation response to finite element simulations. The methodology was refined and its accuracy quantified using a synthetic rubber. The neo-Hookean form of the material model gave a good fit to the measured response of the tissue. The inferred shear modulus μ was found to be in the range 7-100 kPa, with a median value of 11 kPa. A review of published materials data showed a wide range of material properties for human atherothrombotic tissue. The effects of anisotropy and time dependency in these published results were highlighted. The present measurements were comparable to the static radial compression tests of Lee et al, 1991 [Structure-dependent dynamic behaviour of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764-1770].
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
There is a need for better understanding of the processes and new ideas to develop traditional pharmaceutical powder manufacturing procedures. Process analytical technology (PAT) has been developed to improve understanding of the processes and establish methods to monitor and control processes. The interest is in maintaining and even improving the whole manufacturing process and the final products at real-time. Process understanding can be a foundation for innovation and continuous improvement in pharmaceutical development and manufacturing. New methods are craved for to increase the quality and safety of the final products faster and more efficiently than ever before. The real-time process monitoring demands tools, which enable fast and noninvasive measurements with sufficient accuracy. Traditional quality control methods have been laborious and time consuming and they are performed off line i.e. the analysis has been removed from process area. Vibrational spectroscopic methods are responding this challenge and their utilisation have increased a lot during the past few years. In addition, other methods such as colour analysis can be utilised in noninvasive real-time process monitoring. In this study three pharmaceutical processes were investigated: drying, mixing and tabletting. In addition tablet properties were evaluated. Real-time monitoring was performed with NIR and Raman spectroscopies, colour analysis, particle size analysis and compression data during tabletting was evaluated using mathematical modelling. These methods were suitable for real-time monitoring of pharmaceutical unit operations and increase the knowledge of the critical parameters in the processes and the phenomena occurring during operations. They can improve our process understanding and therefore, finally, enhance the quality of final products.
Resumo:
One difficulty in summarising biological survivorship data is that the hazard rates are often neither constant nor increasing with time or decreasing with time in the entire life span. The promising Weibull model does not work here. The paper demonstrates how bath tub shaped quadratic models may be used in such a case. Further, sometimes due to a paucity of data actual lifetimes are not as certainable. It is shown how a concept from queuing theory namely first in first out (FIFO) can be profitably used here. Another nonstandard situation considered is one in which lifespan of the individual entity is too long compared to duration of the experiment. This situation is dealt with, by using ancilliary information. In each case the methodology is illustrated with numerical examples.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.