936 resultados para McCoy cells - Cytotoxic effect
Resumo:
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.
Resumo:
The 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3 beta-HSD gene homolog,was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3 beta-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3 beta-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3 beta-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3 beta-HSD in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3 beta-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3 beta-HSD might be a protein involved in host-virus interaction. @ 2006 Elsevier Inc. All rights reserved.
Resumo:
Interferon (IFN) exerts its antiviral effect by inducing the expression of a number of IFN-stimulated genes (ISGs) to establish a host antiviral state. Earlier studies identified some important fish IFN system genes from IFN-induced CAB cells (crucian carp Carassius auratus L. embryonic blastulae cells) after treatment with UV-inactivated GCHV (grass carp hemorrhage virus). Herein, the cloning of 2 novel IFN-stimulated genes, termed Gig1 and Gig2, is described for the same cell system. The complete cDNA sequences of Gig1 and Gig2 contain 1244 bp encoding for a 194-amino-acid protein and 693 bp for a 158-amino-acid protein, respectively. A search of public databases revealed that these are 2 novel IFN-stimulated genes, since neither significant homologous genes nor conserved motifs were identified. Active GCHV, UV-inactivated GCHV and CAB IFN-containing supernatant (ICS) induced transcription of these genes and distinct kinetics were observed. An analysis of differences in expression between the 2 genes and the IFN signal factors CaSTAT1 and CaIRF7 indicated that GCHV infection activated different signal pathways for their up-regulation. Upon virus infection, the transcription of Gig1 but not of Gig2 is strongly suppressed by cycloheximide (CHX). In contrast, following treatment with CAB IFN-containing supernatant, CHX does not inhibit either gene transcription. The results suggest that GCHV infection can induce expression of both Gig1 and Gig2 via newly synthesized CAB IFN, most probably through the JAK-STAT signal pathway, and can also directly activate Gig2 transcription without ongoing protein synthesis.
Resumo:
The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CA(ext)) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 mumol . m(-2) . s(-1)) or high (210 mumol . m(-2) . s(-1)) irradiance. The changes in CO2 concentrations (4-31 mumol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. CAext was detected in the cells grown at 4 mumol/L CO2 but not at 31 and 12 mumol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photosynthetic CO2 affinity (1/K-1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CA(ext) activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher CA(ext) activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.
Resumo:
The effect of food concentration on the life history of three types of Brachionus calciflorus females (amictic, unfertilized mictic and fertilized mictic female) was studied with replicated individual cultures at 25 degrees and at four food concentrations (1.5, 3.0, 6.0 and 9.0 x 10(6) cells mL(-1)) of Scenedesmus obliquus. There were highly significant effects of both food concentration and female type, independently and in interaction on the duration of juvenile period of the rotifer, but neither a;ere the effects on the duration of post-reproductive period and mean life-span. The duration of juvenile period of unfertilized mictic female at the food concentration of 9.0 x 10(6) cells mL(-1) was the longest among all the food concentration-female type combinations. Both food concentration and female type influenced significantly the duration of reproductive period and the number of eggs produced by each type of female per life cycle, respectively. There was, however, no significant interaction between food level and female type. Among the three types of females, the number of eggs produced by an unfertilized mictic female was the largest. and that of a fertilized mictic female was the smallest.
Resumo:
A highly efficient light-trapping structure, consisting of a diffractive grating, a distributed Bragg reflector (DBR) and a metal reflector was proposed. As an example, the proposed light-trapping structure with an indium tin oxide (ITO) diffraction grating, an a-Si:H/ITO DBR and an Ag reflector was optimized by the simulation via rigorous coupled-wave analysis (RCWA) for a 2.0-mu m-thick c-Si solar cell with an optimized ITO front antireflection (AR) layer under the air mass 1.5 (AM1.5) solar illumination. The weighted absorptance under the AM1.5 solar spectrum (A(AM1.5)) of the solar cell can reach to 69%, if the DBR is composed of 4 pairs of a-Si:H/ITOs. If the number of a-Si:H/ITO pairs is up to 8, a larger A(AM1.5) of 72% can be obtained. In contrast, if the Ag reflector is not adopted, the combination of the optimized ITO diffraction grating and the 8-pair a-Si:H/ITO DBR can only result in an A(AM1.5) of 68%. As the reference, A(AM1.5) = 31% for the solar cell only with the optimized ITO front AR layer. So, the proposed structure can make the sunlight highly trapped in the solar cell. The adoption of the metal reflector is helpful to obtain highly efficient light-trapping effect with less number of DBR pairs, which makes that such light-trapping structure can be fabricated easily.
Resumo:
Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.
Resumo:
A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasmaenhanced chemical vapor deposition (VHF-PECVD)from a mixture of SiH4 diluted in H-2. The effect of hydrogen dilution ratios R = [H-2]/[SiH4] on the microstructure of the films was investigated. The photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that the diphasic films gain both the fine photoelectric properties like a-Si: H and high stability like mu w-Si:H. By using the diphasic silicon films as the intrinsic layer, p-i-n junction solar cells were prepared. Current-voltage (J-V) characteristics and stability of the solar cells were measured under an AM1.5 solar simulator. We observed a light-induced increase of 5.2% in the open-circuit voltage (V-oc) and a light-induced degradation of similar to 2.9% inefficiency.
Resumo:
The successful application of boron-doped hydrogenated nanocrystalline silicon as window layer in a-Si: H nip solar cells on stainless steel foil with a thickness of 0.05 mm is reported. Open circuit voltage and fill factor of the fabricated solar cell were 0.90V and 0.70 respectively. The optical and structural properties of the p-layers have been investigated by using UV-VIS and Raman spectroscopy. It is confirmed that the p-layer is hydrogenated nanocrystalline silicon with a wide optical gap due to quantum size effect.
Resumo:
In order to clarify the major factors having confined the efficiencies of as-prepared crystalline silicon thin film (CSiTF) solar cells on the SSP (silicon sheets from powder) ribbons, QE (quantum efficiency) and Suns-V-oc study were performed on the epitaxial CSiTF solar cells fabricated on the SSP ribbons, the SSP ribbons after surface being zone melting recrystallized (ZMR) and single crystalline silicon (sc-Si) substrates. The results show that the epi-layers deposited on the SSP ribbons have rough surfaces, which not only increases the diffusion reflectance on the surfaces but also makes the anti-reflection coatings become structure-loosened, both of which would deteriorate the light trapping effect; in addition, the epi-layers deposited on the SSP ribbons possess poor crystallographic quality, so the heavy grain boundary (GB) recombination limits the diffusion length of the minority carriers in the epi-layers, which makes the as-prepared CSiTF solar cells suffer the worse spectra response at long-wavelength range. Nearly all the dark characteristic parameters of the CSiTF solar cells are far away from the ideal values. The performances of the CSiTF solar cells are especially affected by too high I-02 (the dark saturation current of space charge region) values and too low R-sh (parallel resistance) values. The higher 102 values are mainly caused by the heavy GB recombination resulting from the poor crystallographic qualities of the silicon active layers in the space charge regions, while the lower R-sh values are attributed to the electrical leakage at the un-passivated PN junction or solar cell edges after the solar cells are cut by the laser scriber.
Resumo:
Background: Subretinal microphotodiode array (MPDA) is a type of visual prosthesis used for the implantation in the subretinal space of patients with progressive photoreceptor cell loss. The present study aimed to evaluate the effect of materials for MPDA on the viability, apoptosis and barrier function of cultured pig retinal pigment epithelium (RPE) cells.Methods: Primary culture of pig RPE cells was performed and 24 pig eyes were used to start RPE culture. The third passage of the cultures was plated on different materials for MPDA and MPDAs. The tetrazolium dye-reduction assay (MTT) was used to determine RPE cell viability. Flow cytometry was measured to indicate the apoptosis rates of RPE cells on different materials. RPE cells were also cultured on microporous filters, and the transepithelial resistance and permeability of the experimental molecule were measured to determine the barrier function.Results: The data from all the methods indicated no significant difference between the materials groups and the control group, and the materials tested showed good biocompatibility.Conclusions: The materials for MPDA used in the present study had no direct toxicity to the RPE cells and did not release harmful soluble factors that affected the barrier function of RPE in vitro.
Resumo:
A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the study on a field-aided collection in p-on-n GaInP2 top cells. The cells were produced by metalorganic vapor phase epitaxy at a low gas pressure. In order to optimize the device configuration, numerical simulations have been performed for the impacts of field-aided collection on the performance of the top cells. On the basis of the modeling results, a modified p(+)-p(-)-n(-)-n(+) configuration is introduced for GaInP2 top cells. This modification has brought out improved photovoltaic performance of the top cells, with conversion efficiency EFF = 14.26% (AM0, 2 x 2 cm(2), 25degreesC). (C) 2003 Elsevier B.V. All rights reserved.