934 resultados para Marriage breakdown
Resumo:
Background: Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings: We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 uC; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results: Marathoners reduced their running pace from 3.5 6 0.4 m/s after 5-km to 2.9 6 0.6 m/s at the end of the race (P,0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (. 15% pace reduction) had elevated post-race myoglobin (1318 6 1411 v 623 6 391 mg L21; P,0.05), lactate dehydrogenase (687 6 151 v 583 6 117 U L21; P,0.05), and creatine kinase (564 6 469 v 363 6 158 U L21; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (23.1 6 1.0 v 23.0 6 1.0%; P = 0.60) or post-race body temperature (38.7 6 0.7 v 38.9 6 0.9 uC; P = 0.35). Conclusions/Significance: Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
In a study undertaken to evaluate the status of the fisheries of Eleiyele Reservoir (Nigeria) between 1995 and 1997, thermal stratification was observed to breakdown between December and March. Of the physico-chemical variables, transparency was positively correlated (p<0.05) with primary productivity, conductivity and dissolved oxygen concentration. Primary productivity ranged between 0.38mgC/m super(2)/d and 3.OmgC/ m super(2)/d, being lowest in April. BOD values ranged between 1.3mg-2.2mgO/l indicative of clean unpolluted water. Nine fish species belonging to the families Cichlidae, Centropomidae and Mochokidae were identified. Cichlids were the most abundant with Hemichromis species being predominant. Fishing was only carried out in the reservoir during the dry season months of November to April. Fish landing data for the reservoir, obtained from the Fisheries Division of the Ministry of Agriculture and Natural resources, Oyo State, in conjunction with comparative data from the Cooperative fishermen was low. It demonstrated a decreasing trend from January to April and during the period between 1985 and 1996, when compared with data collected in 1985 and 1986 from a previous similar study. Reasons for the low fish yield from the reservoir are discussed and compared with other Nigerian reservoirs
Resumo:
We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.
We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.
We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
We investigate the influence of ionization on the propagation and spectral effects of a few-cycle ultrashort laser pulse in a two-level medium. It is found that when the fractional ionization is weak, the production of higher spectral components makes no difference. However, when the two states are essentially depleted before the peak of the laser pulse, the impact of ionization on the higher spectral components is very significant.
Resumo:
The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.
Resumo:
The optical breakdown thresholds (OBTs) of typical dielectric and semiconductor materials are measured using double 40-fs laser pulses. By measuring the OBTs with different laser energy and different time delays between the two pulses, we found that the total energy of breakdown decrease for silica and increase for silicon with the increase of the first pulse energy. (C) 2005 Optical Society of America.
Resumo:
Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.
Resumo:
Separating the dynamics of variables that evolve on different timescales is a common assumption in exploring complex systems, and a great deal of progress has been made in understanding chemical systems by treating independently the fast processes of an activated chemical species from the slower processes that proceed activation. Protein motion underlies all biocatalytic reactions, and understanding the nature of this motion is central to understanding how enzymes catalyze reactions with such specificity and such rate enhancement. This understanding is challenged by evidence of breakdowns in the separability of timescales of dynamics in the active site form motions of the solvating protein. Quantum simulation methods that bridge these timescales by simultaneously evolving quantum and classical degrees of freedom provide an important method on which to explore this breakdown. In the following dissertation, three problems of enzyme catalysis are explored through quantum simulation.
Resumo:
We report on the damage threshold in CaF2 crystals induced by femtosecond laser at wavelengths of 800 nm and 400 nm, respectively. The dependences of ablation depths and ablation volumes on laser fluences are also presented. We investigate theoretically the coupling constants between phonon and conduction band electrons (CBE), and calculate the rates of CBE absorbing laser energy. A theoretical model including CBE production, laser energy deposition, and CBE diffusion is applied to study the damage mechanisms. Our results indicate that energy diffusion greatly influences damage threshold and ablation depth.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800
Resumo:
We investigate polarization-dependent properties of the supercontinuum emission generated from filaments produced by intense femtosecond laser pulses propagating through air over a long distance. The conversion efficiency from the 800-nm fundamental to white light is observed to be higher for circular polarization than for linear polarization when the laser intensity exceeds the threshold of the breakdown of air. (C) 2005 Optical Society of America.
Resumo:
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations. (C) 2007 Elsevier B.V. All rights reserved.