999 resultados para Levantamiento documentación gráfica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

No artigo "The bad and the beautiful", publicado no Finantial Times em janeiro de 2013, Edwin Heathcote realça alguns aspetos que tornam as cidades mais sedutoras e elege as oito mais belas atrações citadinas a nível mundial. O autor coloca o impacto causado pelos padrões ondulantes da calçada do Rossio (calçada do "Mar Largo"), em Lisboa, a par com outros "momentos belos" desencadeados, por exemplo, ao olhar para o grande canal de Veneza, para os apartamentos vitorianos de Nova Iorque ou para a iluminação noturna produzida pelos mercados de rua de Mongkok, em Hong Kong. Sem dúvida que vale a pena dedicar um pouco do nosso tempo a apreciar a bonita calçada portuguesa, uma verdadeira atração mundial. [...] Mas como podemos identificar simetrias no dia a dia? Neste artigo, abordaremos dois dos tipos mais comuns de simetria: a simetria de rotação e a simetria de espelho ou de reflexão. Com o intuito de exemplificar estes tipos de simetria, analisam-se duas rosáceas em calçada, localizadas no Campo de S. Francisco em Ponta Delgada [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un problema al que se enfrentan los profesores de matemáticas de Enseñanza Primaria es la necesidad de hacer adaptaciones en sus programaciones para ofrecer una educación adecuada a sus alumnos de altas capacidades matemáticas. Las editoriales de libros de texto de matemáticas de estos niveles educativos ofrecen diversas soluciones que, usualmente, consisten en incluir, en el libro del alumno, algunos problemas más difíciles y, en la documentación del profesor, una propuesta de problemas de ampliación. Una cuestión que se plantea al analizar un libro de texto de matemáticas es valorar cómo de útil puede ser el material proporcionado por la editorial (libro de texto y materiales complementarios) para un profesor que necesita una programación específica para sus alumnos de altas capacidades matemáticas. En este artículo proponemos diversas variables con las que valorar el grado de adecuación a estudiantes de altas capacidades matemáticas de los documentos proporcionados a los profesores por las editoriales. Después ponemos en práctica esta propuesta analizando el tema dedicado a los cuadriláteros en 4º curso de Enseñanza Primaria de una editorial de amplia difusión en España. Las conclusiones globales son que los materiales del profesor analizados prestan poca atención a los estudiantes de altas capacidades matemáticas y que la metodología de análisis que hemos empleado permite identificar direcciones para plantear actividades interesantes para estos estudiantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas línguas, como o português, que seguem um sistema de escrita 1 alfabético – isto é, um sistema de escrita em que, em princípio, cada símbolo gráfico corresponde a um segmento fonológico (ou, em certos casos, a um segmento fonético) 2 –, verifica-se frequentemente que, além da representação de tais segmentos, outros aspectos das estruturas linguísticas podem ser vertidos para a representação escrita. Como veremos no presente artigo, a inclusão de aspectos não-segmentais na representação gráfica segmental 3 pode introduzir afastamentos desta última em relação a esse objectivo “primordial” da escrita alfabética “ideal” (aquela em que a correspondência grafema-fonema e fonema-grafema seria perfeitamente sistemática e isomórfica). É precisamente sobre a natureza e alguns efeitos desses afastamentos que, partindo de uma perspectiva eminentemente linguística, pretendemos debruçar-nos neste trabalho. Assim, começaremos por reunir algumas reflexões gerais sobre diversos aspectos de natureza linguística – restringindo-nos quase só aos domínios fonético, fonológico e/ou morfológico – que podem encontrar algum tipo de representação na escrita alfabética. Seguidamente, deter-nos- emos sobre a decorrente divisão entre línguas de escrita fonemicamente opaca e línguas de escrita fonemicamente transparente, referindo o lugar do português nessa divisão e abordando, incidentalmente, algumas implicações educacionais da questão

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Química.Ramo Tecnologias de Protecção Ambiental

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Ciências Económicas e Empresariais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Telecomunicações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antes de la aparición de Internet, los profesionales de la traducción veían limitado su trabajo a una ardua labor de documentación, principalmente en soporte papel, que no siempre estaba a su alcance. Gracias al momento actual de auténtica revolución tecnológica de la información, el traductor se encuentra ante todo un abanico de posibilidades que le ofrece Internet, desde eficaces herramientas de traducción, que agilizan la tarea de documentación y reescritura, hasta la oportunidad de poder trabajar on-line o actualizar sus conocimientos gracias a la multitud de recursos y servicios que nos brinda la red de redes. Todas estas herramientas de traducción disponibles en Internet proporcionan múltiples ventajas evidentes. Muchas son de acceso gratuito, se caracterizan por su gran rapidez y por traspasar barreras geográficas y temporales, lo cual hace realidad el hecho de la aldea global, al menos en el mundo desarrollado. Por otro lado tanta rapidez y eficacia exige que desarrollemos tácticas para hacer acopio del gran volumen de información acumulada y que aprendamos técnicas para minimizar el tiempo de búsqueda. No obstante, todo esto exige un gran esfuerzo por nuestra parte. Además los sitios web son efímeros, desaparecen en relativamente poco tiempo o se crean otros nuevos cada minuto y su contenido varía constantemente. Por todo ello es importante ya no sólo conocer las herramientas, sino también saber cómo usarlas, dónde buscar posibles herramientas nuevas, cómo seleccionar la información desechando lo que no nos interesa o bien aprovechar la parte eficaz de estos útiles añadiendo información propia o combinando herramientas. El objetivo, pues, de este artículo es mostrar todos aquellos enlaces electrónicos que se encuentran en Internet y que facilitan en gran medida la labor del traductor, proporcionándole desde las herramientas de trabajo y de documentación para acometer su tarea, hasta la posibilidad de actualizar sus conocimientos e intercambiar opiniones con otros profesionales. Cabe señalar que este artículo no pretende ser un censo de todos los recursos útiles para el traductor, sino que ofrece una compilación comentada de aquellos más eficaces, completos y fiables, con la finalidad de reunirlos en un mismo documento de fácil acceso. Por otra parte, queremos apuntar que los enlaces aquí ofrecidos corresponden al ámbito de la traducción en la combinación inglés-español-gallego, por ser éstos nuestros campos de especialidad. Como conclusión, podríamos apuntar que pese a que en la red podemos encontrar ayudas importantes para la labor de traducción, corresponde al traductor humano maximizar la utilización de dichos recursos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"[...]. É imprescindível o desenvolvimento das competências em Estatística durante a formação escolar, para que o aluno/cidadão adquira uma capacidade de análise crítica em relação às informações que o rodeiam no dia-a-dia. Nesse sentido, cada vez mais, os currículos escolares deverão abranger os conceitos estatísticos, de forma a proporcionarem aos alunos uma aprendizagem relevante para a sua formação. Para que o processo ensino-aprendizagem da Estatística seja valorizado e reconhecido por todos os intervenientes na formação (alunos/professores/comunidade), tem de ser devidamente integrado e trabalhado em contextos reais. [...]"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"[...]. Na sociedade atual, cada vez mais, a utilização de informação estatística tornou-se uma mais-valia no desempenho das atividades profissionais e no envolvimento e participação ativa de qualquer cidadão na comunidade. A informação estatística já não é somente utilizada por profissionais especialistas no contexto de estudos específicos ou de investigações aprofundadas, mas amplamente utilizada também na interpretação e análise crítica da informação veiculada pelos órgãos de comunicação social. Assim, para que os cidadãos possam participar, de forma ativa, na sociedade devem, cada vez mais, possuir um conjunto de conhecimentos básicos de estatística, que lhes possibilite também a capacidade de interpretar, comunicar, criticar e refletir sobre as ideias estatísticas. [...]"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, vamos viajar no tempo e assistir ao nascimento do zero. (...) As origens da Matemática remontam a alguns milhares de anos antes das primeiras civilizações e derivaram da necessidade de contar objetos. Em primeiro lugar, foi necessário distinguir um objeto de muitos objetos (caçar um pássaro ou muitos pássaros). Com o passar do tempo, a linguagem desenvolveu-se para distinguir entre um, dois e muitos. Em seguida, um, dois, três e muitos. (...) O passo seguinte consistiu em agrupar objetos de forma a facilitar a contagem. (...) A verdade é que os antigos gostavam de contar com as partes do seu corpo. Os favoritos eram o 5 (uma mão), o 10 (as duas mãos) e o 20 (ambas as mãos e os pés). O sistema numérico de base 10 acabou por vingar em muitas culturas e isso refletiu-se no vocabulário que ainda hoje utilizamos. Em português, as palavras “onze”, “doze” e “treze” derivam do latim (undecim, duodecim e tredecim), significando “dez e um”, “dez e dois” e “dez e três”. (...) Os sistemas antigos de numeração não contemplaram o zero. A verdade é que ninguém precisava de registar “zero ovelhas” nem contar “zero aves”. Em vez de dizer “tenho zero lanças”, bastava afirmar “não tenho lanças”. Como não era preciso um número para expressar a falta de alguma coisa, não ocorreu a necessidade de atribuir um símbolo à ausência de objetos. (...) O sistema de numeração grego, tal como o egípcio, ignorou por completo o zero. O zero nasceu noutra zona do globo: no Oriente, concretamente, no Crescente Fértil do atual Iraque. O sistema de numeração babilónico era, de certa forma, invulgar. Os babilónios tinham um sistema sexagesimal, de base 60, e usavam apenas duas marcas para representar os seus números: uma cunha simples para representar o 1 e uma cunha dupla para representar o 10. (...) os babilónios tiveram uma excelente ideia: inventaram um sistema de numeração posicional, em que os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. (...) Para os babilónios, o zero era um simples marca-lugar; um símbolo para uma casa em branco no ábaco. O zero não ocupava um lugar na hierarquia dos números; não tinha ainda assumido a sua posição estratégica na reta numérica como o número que separa os números positivos dos negativos. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.