882 resultados para Lagrangian functions
Resumo:
We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose a new technique to analyze total reaction cross sections. In this technique, which has been previously applied to fusion reactions, the experimental data are used to build a dimensionless reaction function, which does not depend oil the system size or details of the optical potential. In this way, total reaction cross sections for different systems can be directly compared. We employ this technique to perform a systematic study of reaction cross sections of weakly bound systems in different mass ranges, and compare their reaction functions with the ones of tightly bound systems with similar masses. We show that breakup reactions and neutron transfers in halo systems lead to large reaction functions, well above the ones of typical tightly or weakly bound stable systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Explicitly orbital-dependent approximations to the exchange-correlation energy functional of density functional theory typically not only depend on the single-particle Kohn-Sham orbitals but also on their occupation numbers in the ground-state Slater determinant. The variational calculation of the corresponding exchange-correlation potentials with the optimized effective potential (OEP) method therefore also requires a variation of the occupation numbers with respect to a variation in the effective single-particle potential, which is usually not taken into account. Here it is shown under which circumstances this procedure is justified.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic-based on the CGRASP and GENCAN methods-for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of benchmark multimodal test functions.
Resumo:
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.
Resumo:
This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.