943 resultados para Iron-deficiency anemia
Resumo:
High-resolution Hubble Space Telescope ultraviolet spectra for five B-type stars in the Magellanic Bridge and in the Large (LMC) and Small (SMC) Magellanic Clouds have been analysed to estimate their iron abundances. Those for the Clouds are lower than estimates obtained from late-type stars or the optical lines in B-type stars by approximately 0.5 dex. This may be due to systematic errors possibly arising from non-local thermodynamic equilibrium (non-LTE) effects or from errors in the atomic data, as similar low Fe abundances have previously been reported from the analysis of the ultraviolet spectra of Galactic early-type stars. The iron abundance estimates for all three Bridge targets appear to be significantly lower than those found for the SMC and LMC by approximately -0.5 and -0.8 dex, respectively, and these differential results should not be affected by any systematic errors present in the absolute abundance estimates. These differential iron abundance estimates are consistent with the underabundances for C, N, O, Mg and Si of approximately -1.1 dex relative to our Galaxy previously found in our Bridge targets. The implications of these very low metal abundances for the Magellanic Bridge are discussed in terms of metal deficient material being stripped from the SMC.
Resumo:
Allergic asthma is a complex immunologically mediated disease associated with increased oxidative stress and altered antioxidant defenses. It was hypothesized that a-tocopherol (a-T) decreases oxidative stress and therefore its absence may influence allergic inflammatory process, a pathobiology known to be accompanied by oxidative stress. Therefore, selected parameters of allergic asthma sensitization and inflammation were evaluated following ovalbumin sensitization and re-challenge of a-T transfer protein (TTP) knock-out mice (TTP-/-) that have greatly reduced lung a-T levels (e.g.
Resumo:
Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.
Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy.
Resumo:
Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (IS2 2s(2) 2P(6)) 3l(2) , 3l3l', and 3l4l configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interact ion (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate Cl for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (MI), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed. (c) 2007 Elsevier Inc. All rights reserved.