1000 resultados para Inventarios-Optimización matemática
Resumo:
La Comisión Internacional para el estudio y mejora de la enseñanza matemática nace de la inquietud de matemáticos, pedagogos, psicólogos y epistemólogos, interesados en estudiar y remediar el fallo que en la educación de todos los países presentaba la enseñanza de las matemáticas, especialmente en los niveles primario y secundario. Estos expertos estimaban que la coordinación de esfuerzos comunes en un plano internacional podría realizar el anhelo de una reforma profunda y eficaz en los programas, métodos y modos de enseñar nuestra ciencia en el mundo.
Resumo:
Contiene: memoria descriptiva y resumen. Premios Nacionales de Innovación Educativa CIDE 2001
Resumo:
Planificar la enseñanza de la Matemática en la universidad, ciclo 1, y elaborar modelos para las pruebas de acceso. Conocer el uso de la Matemática en la práctica laboral. Determinar sistema de acceso a la universidad, contenidos matemáticos de COU y pruebas matemáticas de Selectividad, más idóneos, mediante un análisis comparado con otros países. Elaborar estudios introductorios de los principales temas matemáticos, que sirvan de ayuda a un profesorado heterogéneo. Número indeterminado de licenciados en Ingeniería, Física, Química, Biología, Medicina, Farmacia, Sociología, Economía, Psicología y Pedagogía en activo. Sistema de acceso a la universidad, pruebas y programas matemáticos en varios países. Contenidos matemáticos usuales en COU y la universidad. Se consideran las nociones matemáticas empleadas por la muestra en su práctica laboral. Sistema de acceso a la Universidad vigentes en Francia, RDA, Suiza, Austria, Gran Bretaña y EEUU. Contenidos matemáticos de los programas de las pruebas de acceso de varios países y España. Tipo de pruebas matemáticas empleado en varios países. Esta metodología: visión introductoria, enfoque histórico y alternativo y apoyo bibliográfico para cada contenido. Se detalla qué Matemáticas emplean los profesionales. Cálculo y análisis se usan bastante en todo sector laboral, álgebra y geometría, sobre todo en Ingenieria, por su relación con la tecnología, probabilidad y estadística, las más usadas, en carreras experimentales. Se detallan sistemas de acceso, pruebas y contenidos matemáticos en varios países, se recomienda que los examenes sean independientes para cada materia y los tribunales, nombrados por las universidades, tengan un representante del centro escolar. Las universidades dicten normas de acceso sin considerar expedientes académicos, el programa matemático sea más amplio y menos universitario, con métodos numéricos sencillos y aplicaciones prácticas. El examen consta de 2 partes, multirrespuesta y problemas, que evalúen objetivos de conocimiento, comprensión y aplicación y de síntesis y análisis. Se elaboraron 10 monografías: no reales, sucesiones y series. Convergencia y continuidad, espacios métricos y estructuras topológicas y algebraicas, cálculo diferencial, optimización, estructuras del álgebra, polinomios, álgebra lineal, geometría, probabilidad, estadística. Se han elaborado tres informes cualitativos, modalidades existentes en las pruebas de acceso a la universidad, contenidos de esas pruebas y enfoque didáctico que debe darse a las asignaturas matemáticas en el primer ciclo universitario, y un estudio de campo, cuantificación del uso de diversos tópicos matemáticos por parte de los titulados superiores, en la docencia, en la investigación y en el ejercicio profesional, como contribución a la mejora del nivel didáctico de las asignaturas de Matemáticas que se imparten en la universidad y del actual sistema de acceso a la Enseñanza Superior.
Resumo:
Los objetivos son: elaborar, experimentar y valorar unos materiales escritos destinados a la formación científica y didáctica de profesores de matemáticas de enseñanza secundaria, concebidos para ser utilizados personalmente, pero susceptibles de ser usados como material básico en cursos de formación de profesores. Hipótesis: 1. Se produciría en el profesorado un cambio positivo de las expectativas respecto a la utilidad de este tipo de material y un incremento significativo de sus conocimientos sobre el tema y su didáctica. 2. Una importante proporción de profesores de enseñanza media poco proclive a participar en cursos de actualización, estaría dispuesto a dedicar tiempo y esfuerzo a su autoformación mediante el uso de un material con las características del presente. 48 profesores de matemáticas de enseñanza secundaria de la Comunidad de Madrid. Se desarrollan tres tipos de materiales: de geometría, de análisis y de estadística. Estos materiales se presentan a profesores de matemáticas para que realicen una crítica de cada uno de los bloques de esos módulos. Para ello se les pide que rellenen un cuestionario. Se desarrollan dos etapas, la primera sirve como instrumento para desarrollar mejor la segunda, y en la segunda, corregidos los errores, se obtienen las conclusiones. Se utiliza un cuestionario denominado guías de lectura crítica, un cuestionario de actitudes y expectativas, y pruebas de conocimiento para comparar la variación de conocimientos antes y después de haber leído el material diseñado. Dentro del análisis se escoge el tema de la optimización, a través del cual se muestra el crecimiento de una rama de la matemática a través de los siglos. El 80 por ciento de los participantes son licenciados en matemáticas. La edad de los participantes se mueve entre los 26 y los 51 años. El motivo para participar es porque es una buena ocasión para actualizar los conocimientos sin tener que asistir a actividades programadas. Los materiales elaborados resultan satisfactorios en lo que se refiere a: organización y estructura, adecuación de su nivel de dificultad a la situación del profesorado de secundaria, capacidad para despertar el interés de los profesores sobre los contenidos de los módulos, posibilidad de que la mayor parte de los bloques diseñados puedan ser utilizados en el aula. Siempre que se den determinadas condiciones, un porcentaje significativo de profesores de matemáticas de secundaria participan en un programa de autoformación científica y didáctica y llevan a término las actividades relacionadas con él. La razón que hace que muchos profesores participen es su carácter de autoformación. Se ha dedicado un tiempo medio para la formación de 25 horas. Los materiales se leen en el orden presentado, aunque se pueden leer en cualquier orden. Para que un plan de autoformación alcance los objetivos que se esperan, debe cumplir las condiciones: utilización de materiales elaborados específicamente con esta finalidad y con determinadas condiciones formales y de contenido, participación de manera voluntaria y a iniciativa del interesado, otención de acreditación similar a la que corresponde a otras actividades de formación. Los materiales elaborados han producido un incremento significativo en los conocimientos sobre los temas que eran objeto. La participación en el programa de formación ha sido satisfactoria para casi todos los sujetos..
Resumo:
Ante la exigencia de entornos cooperativos, incluso por parte de los currículos oficiales, el objetivo principal de esta investigación es la optimización de metodologías docentes en el uso y aplicación de entornos telemáticos cooperativos como recursos didácticos en clases presenciales de química. El entorno cooperativo inicialmente elegido ha sido BSCW (Basic Support for Cooperative Work), aunque con el lanzamiento de la plataforma Sinergia en el año 2003, entorno basado en BSCW y optimizado para el mundo docente, se incorporó este nuevo sistema a la investigación. Las hipótesis del trabajo son: 1. Consideramos la plataforma BSCW como un soporte informático adecuado al trabajo cooperativo on-line en general, y para la producción cooperativa de hipermedia en particular, ya que es un groupware basado en la propia red de Internet, 2. La introducción de las TICs en el aula, como innovación didáctica, aumenta el interés de los estudiantes y disminuye la sensación de monotonía en comparación con las clases tradicionales, 3. El trabajo en grupos cooperativos y la ayuda de tutoriales aumentan la autonomía y la responsabilidad del estudiante en el proceso docente, 4. El uso de entornos telemáticos cooperativos favorece la reflexión individual, el desarrollo de habilidades grupales y una mayor implicación de cada miembro del grupo, 5. La producción de hipermedia permite al alumnado crear y organizar mejor su propio conocimiento puesto que les hace pensar cómo representar una idea, cómo establecer relaciones entre ellas y cómo unir diferentes representaciones de las mismas. El estudio se ha desarrollado en dos fases: la I o de campo y la II o de análisis o actuación. En la fase de campo han participado estudiantes de los cursos 2001-02, 2002-03 y 2003-04 del Ciclo Formativo de química ambiental del IES Mercè Rodereda, de L`Hospitalet de Llobregat (Barcelona). El número de matriculados en este ciclo es variable(35-60), con edades entre 18 y 38 años, distribuidos en 3 grupos-clase. Y proporción similar entre hombres y mujeres. Para llevar a cabo la Fase I del estudio, el alumnado ha utilizado los entornos telemáticos BSCW y Synergeia y el editor HTML Nestcape Composer, todos ellos gratuitos. El alumnado ha respondido a la encuesta del proyecto ITCOLE y a una pregunta respuesta abierta y a cuestionario Likert adicionales. Para el tratamiento estadístico de las respuestas de los cuestionarios Likert se han empleado pruebas estadísticas no paramétricas: la mediana, el rango intercualítico y la prueba de U de Mann-Whitney.En la II fase se elaboran guías, tutoriales y un feedback. La investigación durante los dos primeros cursos utilizando el entorno BSCW, ha resultado valiosa para decidir que Synergeia, como entorno, ya supone una optimización del BSCW. Por otro lado durante los tres cursos se fue optimizando la metodología empleada, alcanzando su más alto grado en el curso 2003-04.Los resultados de la investigación de los dos primeros años nos permiten concluir que el BSCW es una plataforma que facilita el trabajo cooperativo telemático entre estudiantes y que, junta a la búsqueda de información en Internet, contribuye a la adquisición de una actitud crítica sobre el aprovechamiento de recursos didácticos telemáticos. El BSCW es adaptable a las asignaturas del CFGS de química ambiental en las que se ha estudiado. Sin embargo, la versatilidad de BSCW representa un arma de doble filo para el docente, ya las múltiples opciones de configuración y estructuración implican una notable complejidad a la hora de organizar espacios compartidos y sus permisos de acceso, lo que exige un considerable esfuerzo, entrenamiento y dedicación del docente. En cuanto a Synregeia, se puede determinar que esta plataforma mantiene características básicas del BSCW para facilitar el aprendizaje y el trabajo cooperativo entre estudiantes que pueden no coincidir en el espacio y-o el tiempo e incorpora otras funcionalidades que aumentan la implicación de los estudiantes, como la negociación, valorada positivamente por el alumnado. Cooperar con otros estudiantes a través de Synergeia ha resultado fácil para el alumnado. Pero al no tener interfaz en ingles lo dificulta. Para que se produzca una reflexión individual es necesario que expresen sus ideas y consultar con otros miembros. Las actividades centradas en el estudiante requieren una actitud más activa y el profesor debe ceder parte de su responsabilidad. La creación de un espacio de trabajo en Synergeia ha simplificado el proceso y es mas fácil. Y los tutoriales han conseguido que los estudiantes se sientan más seguros, mayor control y autonomía en el proceso de aprendizaje .
Resumo:
Se trata de evaluar el currículum de matemáticas en su totalidad con pruebas criteriales que relacionen directamente la producción de los niños en periodo de Educación Infantil, con un nivel de exigencia previamente establecido. Para ello se elabora y valida una prueba de evaluación criterial para los contenidos matemáticos del segundo ciclo de Educación Infantil. Se elabora y comprueba la eficacia de un programa de intervención para consolidar los contenidos de matemáticas del segundo ciclo de EI mediante una metodología multicomponencial y se analiza la eficacia del programa para la prevención de las dificultades en el aprendizaje de las matemáticas en primaria. La muestra del estudio está formada por 100 niños y niñas de edades comprendidas entre 4 y 5 años en la evaluación inicial y entre 5 y 6 años en la evaluación final, residentes en las ciudades de Valencia, Xátiva, Llosa de Ranes y Vallada. Los instrumentos aplicados en la investigación son, una prueba de evaluación criterial y una Batería de Aptitudes Diferenciales y Generales (BADyG) que permite medir una serie de factores intelectuales, diferenciar dos factores de grupo y un superfactor de inteligencia general. La BADyG está dividida en seis subtest: conceptos cuantitativos-numéricos, información, vocabulario gráfico, habilidad mental no verbal, razonamiento con figuras y rompecabezas. El proceso se inicia con la elaboración de la prueba criterial; para ello se comienza concretando los contenidos mínimos del Diseño Curricular Base del segundo ciclo de EI, recogiendo documentación, revisando proyectos curriculares de distintos colegios y confeccionando un borrador, análisis y debate grupal de profesionales y secuenciación de contenidos de EI. A continuación se precede al análisis de los ítems, la determinación de estándares y puntos de corte, la comprobación de la fiabilidad y la validación del instrumento desarrollado. Tras ello, se procede a la elaboración de un programa multicomponencial, previa recogida de información sobre la práctica matemática y las metodologías utilizadas, para que el niño adquiera conceptos y destrezas básicas. Se aplican condiciones distintas a grupos de niños distintos. Queda comprobada la eficacia de la prueba para evaluar la competencia matemática cubriéndose además una laguna por la carencia de pruebas matemáticas en el ámbito de EI. Se logra elaborar un programa multicomponencial que obtiene mejores resultados comparados con otras metodologías, aun siendo una investigación natural. Por último, los resultados de la escala de Cadieux y Boudrealt muestran que los sujetos que participaron en una de las condiciones propuestas (Arco Iris) estaban mejor preparados para afrontar con éxito la educación primaria.
Resumo:
Comprobar si los conceptos relativos a la Teoría de conjuntos, figuras geométricas y ángulos se adquieren realmente o son sólo generalizaciones que conservan aspectos perceptuales. Observar si los niños son capaces de aplicar estas nociones a la realidad. El trabajo asume que la mejora de la enseñanza de las Matemáticas supone un conocimiento de cómo se construyen las nociones en relación con las situaciones en que se presentan. Propone nuevas modificaciones y criterios didácticos para la enseñanza de las Matemáticas. Nociones de la Teoría de conjuntos: 60 ss. entre 5 y 12 años pertenecientes a colegio publico (clase media) y otro privado (clase media-alta y media). Se seleccionaron 5 sujetos por cada nivel de edad. Comprensión de figuras geométricas: 40 ss. de primero a octavo de EGB (cinco por curso) pertenecientes a un colegio nacional de Madrid. Comprensión del concepto de ángulo: 30 ss. de tercero a octavo de EGB (5 sujetos por curso) pertenecientes a un colegio nacional de las afueras de Madrid. Aplicación de nociones matemáticas a problema de engranajes: 42 ss. entre 7 y 12 años de los cursos segundo y sexto de EGB (7 sujetos por nivel de edad) pertenecientes a un colegio nacional de Madrid. Cuatro diseños que evalúan comprensión de nociones en ámbitos diferentes. Siguiendo el método clínico en las que se evalúan dificultades de comprensión, aplicación a situaciones reales, ejemplos y utilidad percibida de diferentes conceptos (estos aspectos funcionan como variable dependiente). La variable independiente es la edad o el curso, según casos. Entrevistas individuales, fueron grabadas en audio y codificadas simultáneamente por dos observadores. Los datos fueron distribuidos en niveles según el grado de comprensión que denotaban los protocolos. Diseños: I, Teoria de conjuntos: 5-sujetos-x6-niveles de edad- x2-centros-. Intrasujeto. II, figuras geométricas: 5-sujetos-x8-cursos-. Intrasujeto. III, ángulos: 5-sujetos-x6-cursos-. Intrasujeto. IV, engranajes: 7-sujetos-x6-cursos-. Intrasujeto. Nociones sobre conjuntos: no se asimilan hasta cuarto de EGB, y a partir de aquí sólo de forma parcial. Frecuente que el niño confunda la noción de conjunto con su representación gráfica. Tampoco existe relación con las restantes nociones de Matemáticas. Figuras geométricas: se identifican como tales sólo en determinadas posiciones. No hay una comprensión de los conceptos, sólo una asociación entre una palabra y una figura determinada. El concepto de ángulo se asocia a longitud de los lados. Engranajes: se observan grandes dificultades de comprensión de desplazamientos y direcciones. No son capaces de relacionar nociones matemáticas, que ya poseen, con este problema para solucionarlo. La deformación a que someten los niños las enseñanzas para adaptarlas a su estructura mental ponen de manifiesto tales estructuras. Los conceptos elaborados por el niño tienen una alta dependencia de las configuraciones perceptivas y anecdóticas sin alcanzar verdadera comprensión. Se observa gran dificultad para aplicar estas nociones a problemas concretos. Recomendaciones curriculares para mejorar la enseñanza de las Matemáticas.
Resumo:
Medir la madurez académica de los alumnos al terminar la EGB. Se pretende conocer el nivel de conocimiento y de comprensión y las destrezas desarrolladas en las áreas de Ciencias, Matemáticas y Lenguaje durante toda la EGB. De la población de alumnos de octavo de EGB de la provincia de Zaragoza durante el curso 1977-78, se extrajo mediante muestreo estratificado aleatorio con afijación proporcional una muestra de 886 alumnos. Los criterios de estratificación fueron: tipo de centro y tamaño de la población. En primer lugar, se elaboró la prueba de madurez académica, realizándose un estudio piloto para corregir probables defectos de la misma y estimar debidamente el tiempo de aplicación. La prueba pretende medir el rendimiento de los alumnos en Matemáticas, Ciencias y Lenguaje y el rendimiento global. Para ciertos análisis se definieron como variables independientes el tipo de centro y lugar de ubicación del mismo (estrato) y el sexo de los alumnos. Las variables dependientes eran el rendimiento en las diferentes áreas y el rendimiento global. Prueba de madurez académica para las áreas de Lengua, Matemáticas y Ciencias elaborada ad-hoc. Para analizar las cualidades métricas de la prueba se utilizaron índices de consistencia interna (fiabilidad K-20), e índices de dificultad de ítems y de discriminación de ítems. Para el análisis global de datos se calcularon índices de tendencia central y dispersión, frecuencias y porcentajes. Para el análisis por estratos y sexo se utilizó el análisis de varianza. Respecto a las cualidades métricas de la prueba, se observa una alta consistencia interna para la prueba global (Kr-20= 0.85) y una fiabilidad aceptable de las pruebas de cada área. Así mismo, la capacidad de discriminación también se asegura por los índices obtenidos. Del análisis global de los datos se deduce que el rendimiento académico de los alumnos es bajo, no alcanzándose, en gran medida, los objetivos de madurez académica establecidos para el término de la EGB. En el análisis por estratos y sexo se observa que las puntuaciones obtenidas por los alumnos de centros estatales son, como promedio, más elevadas que las de los centros no estatales. En el área donde más se acentúa esta diferencia es en la de Lenguaje. No existen diferencias significativas en el rendimiento global respecto a la variable sexo. Sin embargo, se observa un rendimiento significativamente mayor de los varones en el área de Ciencias y de las mujeres en el área de Lengua. La EGB se plantea unos objetivos que no son alcanzables por los alumnos, ni siquiera por los mejor dotados y con un historial académico más selecto.
Resumo:
Implicaciones de la Matemática moderna en la enseñanza, en relación con el alumno y profesor. 4 Partes: I. Fines y contenidos de la enseñanza matemática actual, revisar programas anteriores, objetivos programados y relación con otras materias. II. Metodología matemática, métodos actuales y desarrollos específicos. III. Recursos y evaluación, estado de implantación de la nueva Matemática, preparación del profesorado y papel del seminario didáctico. IV. Tratamiento estadístico de datos. Resultados sobre la adquisición de los objetivos de la taxonomía NLSMA, influencia de diversas variables (factores de éxito, Standford) en la dificultad de los problemas y estudio de la conducta del profesor, por el método Amidon-Flanders. Para modelo Standford, 5 centros de BUP (400 alumnos) más otra de 300 universitarios. Taxonomía NLSMA, varios centros (470 alumnos). Método Flanders: 6 profesores. Taxonomía NLSMA: cuestionario, bloques con número desigual. Modelo Standford: variables independientes: tipo de problema, n pasos en la resolución, inclusión de información superflua y existencia de frase clave. Diseño factorial 4x2x2x2. Evaluación de profesorado y seminarios: encuesta por correo. Criterios muestrales: tamaño del centro, zona geográfica. Variables controladas: centro, profesor y provincia. Método Flanders, grabación de las clases. Sistema de codificación de conductas e interacciones modificado con 10 categorías de ocurrencia. Sobre textos escolares concluyen que su extensión e interpretación es diversa, no plantean objetivos de conducta y adolecen de errores conceptuales. De la encuesta al profesorado extrae que casi todos son matemáticos, con poca formación adiccional. La mitad prefieren el sistema tradicional de enseñanza y aceptan la matemática moderna. Respecto a los seminarios, pobre funcionamiento. No esta extendida la evaluación previa del nivel del alumno y los programas no suelen incluir procedimientos de rectificación. El método NLSMA, útil para analizar las adquisiciones progresivas obteniendose agrupaciones características según niveles. La influencia de variables Standford es significativa y depende del nivel académico. La observación del profesor revela patrones de comportamiento característicos. Método válido para estudiar la interacción profesor-alumno. Ofrece programación completa y cuestionarios de evaluación para diversas áreas de Matemáticas. Resalta la importancia del seminario para organizar y evaluar. Relación maestro-alumno-materia como factor decisivo en el aprendizaje.
Resumo:
Conocer y valorar las posibilidades educativas del material 'Los números en color' en los niños invidentes. Niños ciegos del Colegio Nuestra Señora del Socorro, de la Fundación Burguet de Valencia. La metodología se apoya en la práctica docente con niños invidentes en su ambiente normal de escolarización y en la recogida de información a través de la grabación en vídeo de las sesiones escolares desarrolladas. Mediante una técnica próxima a la entrevista clínica con una pareja de alumnos, se experimenta de modo casi personalizado. Debido a las características del material, se sigue el proceso tacto-acción-comprensión a partir de las preguntas y requerimientos del entrevistador, dirigidas en una primera parte de la experiencia a conocer las carencias y posibilidades del material en lo que se refiere a su papel de modelo matemático para los niños invidentes y, en una segunda parte, encaminadas a la búsqueda y ensayo de aquellas modificaciones que permitan paliar las carencias encontradas en la forma tradicional de las regletas. Se trata de saber si los números en color funcionan con los niños ciegos o no, y si es así, de valorar sus posibilidades educativas. Se han impartido 20 sesiones de aproximadamente 30 minutos utilizando las regletas de cuisenaire tradicionales de madera; a continuación se han impartido otras 20 sesiones de 30 minutos a dos alumnas ciegas totales empleando las regletas de cuisenaire modificadas de acuerdo con sus hipótesis. El niño ciego manipula las regletas de hierro tan rápidamente y con la misma eficacia con que los niños videntes manipulan las regletas de madera de cuisenaire. Teniendo en cuenta que los números en color tradicionales tienen sobradamente demostrada su utilidad en el aprendizaje del Álgebra y de la Aritmética con niños videntes, se infiere que el material es el idóneo para esta misma enseñanza con niños ciegos. Como quiera que las regletas de hierro podrían ser utilizadas por niños videntes con la misma eficacia que las regletas de madera, puede afirmarse que el material facilitará sensiblemente el aprendizaje del Álgebra y de la Aritmética a los niños ciegos integrados en grupos de alumnos videntes.
Resumo:
A/ Elaborar un nuevo material curricular de Matemáticas para primero y segundo de BUP. B/ Crear y diseñar actividades para prácticas en un laboratorio matemático. El objeto del trabajo es construir una guía de posibles aplicaciones para el profesor; en ella, cada uno, de acuerdo con su formación y las características de sus alumnos, puede encontrar temas y sugerencias suficientes para comenzar a esbozar un curso propio de Matemáticas pretécnicas. En esta memoria final del proyecto de investigación se han diseñado y valorado las actividades que podrían configurar las prácticas de un laboratorio matemático para los dos primeros cursos de BUP. Cada práctica se compone de: A/ Nombre de la actividad. B/ Objetivos. C/ Presentación. D/ Contenidos. E/ Actividades. F/ Recursos y medios didácticos. G/ Temporalización. H/ Evaluación. Algunas de ellas se han experimentado. Y finalmente se exponen las conclusiones a las que han llegado. Gráfica de medias. Las actividades que se presentan para primero de BUP son: A/ Práctica con la calculadora. B/ Algoritmos no habituales para multiplicar. C/ Medida de áreas por métodos elementales. D/ Construcción de un nonius. E/ Operaciones gráficas. F/ Resolución de ecuaciones y sistemas mediante procesos iterativos. G/ Construcción de un pantógrafo. H/ Matemática comercial. I/ Problemas de simulación. J/ Aplicación de conceptos estadísticos a un caso práctico. Para segundo de BUP son: A/ Cálculo avanzado con la calculadora. B/ Estudio funcional con la hoja de cálculo. C/ Ábacos logarítmicos. D/ Funciones exponenciales y logarítmicas. E/ Medida con Gnomon. F/ Construcción de clinómetro, báculo de Jacob y regla paraláctica. G/ Medida del radio de la tierra según el método de Eratóstenes. H/ Construcción de un reloj de sol. Necesidad de implantar en el currículum de Enseñanzas Medias un laboratorio matemático en las mismas condiciones materiales y de dotación de profesorado que tienen otras asignaturas de corte experimental: Física, Ciencias Naturales, etc.
Resumo:
Se muestran las dificultades que entrañan la configuración de temarios en las asignaturas del área de didáctica de la matemática en la formación de profesores de educación infantil y primaria. Problemas como la identificación de instrumentos didácticos y en qué medida pueden considerarse útiles para la actividad de formación profesional del maestro deben ser sometidos a un análisis y una reflexión permanente.
Resumo:
En esta ponencia se presenta la necesidad de realizar actividades para que se desarrolle el saber práctico profesional en la formación inicial de maestros en el Area didáctica de la matemática. Para ello, una de las actividadades más importantes es realizar, aplicar y evaluar diseños curriculares concretos. Para alcanzar este objetivo, la autora proporciona un estudio de la estructura de los contenidos formativos, así como una propuesta metodológica.
Resumo:
El autor presenta unas reflexiones centradas en los objetivos y contenidos de la asignatura 'Didáctica de la Matemática en el Bachillerato' que se imparte en el quinto curso de la Licenciatura de Matemáticas de la Universidad de Granada (Plan de Estudios de 1975), en la especialidad de metodología. Asimismo, se hace un estudio del perfil del alumno en esta licenciatura.
Resumo:
La formación de los psicopedagogos en el Area Didáctica de Matemática precisa de una nueva orientación. La autora propone una nueva perspectiva que se desarrolla a través de un plan de acción. Dicho plan se articula en tres fases: la primera, un programa pretendido, donde se establecen los objetivos y contenidos; la segunda fase, el programa desde el punto de vista de su desarrollo, en él se incluyen la programación de contenidos, el modelo de acción y medios; y una tercera fase, el programa logrado, donde se integran los elementos para la evaluación.