933 resultados para Immunohistochemistry (conjunctival keratoacanthoma)
Resumo:
The progression of the oral squamous cells carcinomas (OSCCs) seems to suffer influence from related factors to the host, as local and systemic immunologic response, which are essential to the antineoplasic defenses. The purpose of this study was evaluate the local immunity in 30 tongue and 20 lower lip SCC by immunohistochemistry method, utilizing antibodies anti-CD3, CD4, -CD8, -CD25 e -ζ(zeta), which immunoexpressions were compared considering the anatomical localization, the intensity of the inflammatory infiltrate into the front of invasion and metastases. The CD4/CD8+ ratio was calculated for each case and associate with the mentioned variable, being the intensity of the inflammatory infiltrated also compared with the anatomical localization and metastase and for this the cases had been grouped in two categories: (n = 10) absent/scarce inflammatory infiltrate; and (n = 40) moderate/intense infiltrate. Fisher´s exact test was performed (α= 0.05) and it was not observed any significant correlation between these groups with anatomical sites and metastases. With regard to the immunoexpression, the CD3+, CD4+, CD8+ and CD25+ cells count was higher in the lower lip SCCs while the anti-ζimmunomarcation was more evident in the non metastatic cases. Through the statistical analyses, it was verified that the CD3 exhibited positive-significant correlation with the inflammatory infiltrate (p = 0.023). Furthermore, antibodies against CD8 and CD25 cells were also significantly correlated with the inflammatory infiltrate (p = 0.002 and 0.030, respectively) and with the anatomical site (p = 0.004 and p = 0.004) mainly in the lower lip SCCs. CD4/CD8 ratio did not show significant association with metastase nor with anatomical localization. We conclude that the inflammatory infiltrated of the Bryne s (1998) system did not constitute an indicator of aggressiveness in the tongue and lower lip SCCs analyzed and that clinical behavior of the SCCs studied was related in part to the immunohistochemical profile of infiltrated the inflammatory present in tumoral invasion front
Resumo:
In this study, two circadian related centres, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) were evaluated in respect to their cytoarchitecture, retinal afferents and chemical content of major cells and axon terminals with a tract tracer and immunohistochemical techniques in the rock cavy (Kerodon rupestris), a Brazilian caviidae rodent species. The rock cavy SCN is innervated in its ventral portion by terminals from the predominantly contralateral retina. It also contains neurophisin and vasoactive intestinal polypeptide immunoreactive cell bodies and neuropeptide Y and enkephalin immunopositive fibres and terminals and is marked by intense GFAP immunoreactivity. The IGL receives a predominantly contralateral retinal projection, contains neuropeptide Y and nitric oxide synthase producing neurons and enkephalin immunopositive terminals and is characterized by dense GFAP immunoreactivity. This is the first report examining the neural circadian system in a crepuscular rodent species for which circadian properties have been described. The results are discussed comparing with what has been described for other species and in the context of the functional significance of these centres
Resumo:
Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset
Resumo:
The visual system is an important link between the animal and the environment, com profound influences on the habits and lifestyle in various habitats. Adaptive mechanismsto the temporal niche are present in the visual system of many vertebrates, involving changins in ocular dimensios and design, retinal cell distribution and organization of neurochemical circuits related to the retinal resolution or sensitivity. The sensory system of the eye is represented by the retina, whose organization is responsible by receipty, initial analysis, and transmission of the information to the brain. The knowledge of the position of the eyes in the head and the distribution of retinal cells allow to identify adaptive aspects of each species to its visual field, which is characteristic to the ecological niche it occupies. In this research, we study eye anatomical characteristics and retina neurochemical features of the rock cavy (Kerodon rupestris), a tipical Brazilian rodent from the suborder Hystricomorpha, family Caviidae. The rock cavy has lateral eyes well constitute bony orbit and well differentiated extrinsic muscle. The study of the descriptive and morphometric anatomy of the showed mean values of axial diameter 10.7±0,5mm and equatorial diameter 11.6±0.7mm. The pupil is slit shaped and the lens has mean axial diameter 5.4±0.03 mm, corresponding to ~45% of the axial diameter of the eye. The posterior nodal distance and the retinal magnification factor were estimated at 6.74 mm e 118 μm/grau, respectively. Flat mounts were processed for Nissl stain, and the topographic distribution of ganglion cells showed a moderate visual band, just below the optic disc, with higher density in the ventral retina. Retinal vertical sections and flat mounts were processed for immunohistochemistry to visualize tyrosine hydroxilase (TH) and thus two types of TH+ cells were detected. Type 1 cells had strong TH-immunoreactivity, the body cell varied from 120.047 to 269.373 μm2 stratifying in the sublamina 1 of the IPL. Type 2 cells were weakly TH-imunoreactive, had cell body located mostly in the IPL, varying from 54.848 to 177.142 μm2, constituting ~10% of the TH+ cells. Both cell types exhibited similar topographic distribution with higher density found in a horizontal band along of the naso-temporal axis in the dorsal retina. The total population of dopaminergic cells was 2,156±469,4 cells, occupying an average area of 198,164 μm2. The presence of cones and rods was detected by immunohistochemistry in vertical sections and flat mounts. S cones density is around 10 times smaller than L cones, with different degree of spatial organization. Other retinal neuronal populations of the rock cavy were also detected in vertical sections with specific markers. Comparative analysis of the anatomical characteristics of the rock cavy eye 12 suggest that it was designed to acquire higher sensitivity to light, at expense of image sharpness, compatible with a vision at mesopic conditions. Additionally, the distribution of the 2 subtypes of dopaminergic cells in a naso-temporal band in the dorsal retina seems suitable to a gain in sensitivity, coherent with an animal with predominantly crepuscular activity pattern
Resumo:
In the behavioral paradigm of discriminative avoidance task, both short and long-term memories have been extensively investigated with behavioral and pharmacological approaches. The aim of the present study was to evaluate, using the abovementioned model, the hippocampal expression of zif-268 - a calcium-dependent immediate early gene involved with synaptic plasticity process - throughout several steps of memory formation, such as acquisition, evocation and extiction. The behavioral apparatus consisted of a modified elevaated plus-maze, with their enclosed arms disposed in "L". A pre-exposure to the maze was made with the animal using all arms enclosed, for 30 minutes, followed by training and test, during 10 minutes each. The between sections interval was 24h. During training, aversive stimuli (bright light and loud noise) were actived whenever the animals entered one of the enclosed armas (aversive arm). Memory acquisiton, retention and extinction were evaluated by the percentage of the total time spent exploring the aversive arm. The parameters evaluated (time spent in the arms and total distance traveled) were estimated with an animal tracking software (Anymaze, Stoelting, USA). Learning during training was estimated by the decrease of the time spent exploring the aversive arm. One hour after the beginning of each section, animals were anaesthetized with sodium-thiopental (i.p.) and perfused with 0.9% heparinized saline solution followed by 4% paraformaldehyde. Brains were cryoprotected with 20% sucrose, separeted in three blocks and frozen. The middle block, containing the hippocampus, was sectioned at 20 micro meters in the coronal plane and the resutant sections were submitted to zif-268 immunohistochemistry. Our results show an increased expression of zif-268 in the dentate gyrus (DG) during the evocation and extinction stages. There is a distinct participation of the DG during the memory evocation, but not during its acquisition. Inaddition, all hippocampal regions (CA1, CA3 and DG) presented an increased zif-268 expression during the process of extinction.
Resumo:
Immediate-early genes (IEGs) expression has been widely used as a valuable tool to investigate brain areas activated by specific stimuli. Studies of natural vocalizations, specially in songbirds, have largely benefited from this tool. Here we used IEGs expression to investigate brain areas activated by the hearing of conspecific common marmoset (Callithrix jacchus) vocalizations and/or utterance of antiphonal vocalizations. Nine adult male common marmosets were housed in sound-attenuating cages. Six animals were stimulated with playbacks of freely recorded natural long distance vocalizations (phee calls and twitters; 45 min. total duration). Three of them vocalized in response (O/V group) and three did not (O/n group). The control group (C) was composed by the remaining animals, which neither heard the playbacks nor spontaneously vocalized. After one hour of the stimulation onset (or no stimulation, in the case of the C group), animals were perfused with 0,9% phosphate-saline buffer and 4% paraformaldehyde. The tissue was coronally sectioned at 20 micro meter in a cryostat and submitted to immunohistochemistry for the IEGs egr-1 and c-fos. Marked immunoreactivity was observed in the auditory cortex of O/V and O/n subjects and in the anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex of O/V subjects. In this study, brain areas activated by vocalizations of common marmosets were investigated using IEGs expression for the first time. Our results with the egr-1 gene indicate that potential plastic phenomena occur in areas related to hearing and uttering conspecific vocalizations.
Resumo:
The auditory system is composed by a set of relays from the outer ear to the cerebral cortex. In mammals, the central auditory system is composed by cochlear nuclei, superior olivary complex, inferior colliculus and medial geniculate body. In this study, the auditory rombencephalic centers, the cochlear nuclear complex and the superior olivary complex were evaluated from the cytoarchitecture and neurochemical aspects, thorough Nissl staining and immunohistochemical techniques to reveal specific neuron nuclear protein (NeuN), glutamate (Glu), glutamic acid decarboxilase (GAD), enkephalin (ENK), serotonin (5-HT), choline acetyltransferase (ChAT) and calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). The common marmoset (Callithrix jacchus), a little native primate of the Brazilian atlantic forest was used as an experimental animal. As results, it was noted that the cochlear nuclear complex is composed by anteroventral, posteroventral and dorsal nuclei, and the superior olivary complex is constituted by the lateral and medial superior olivary nuclei and the trapezoid body nucleus. Glu, GAD, ENK, ChAT, CB, CR, PV-immunoreactive cells, fibers and terminals besides besides only 5-HT terminals were found unhomogeneously in all nuclei, of both complex. The emerging data are discussed in a comparative and functional context, and represent an important contribution to knowledge of the central auditory pathways in the common marmoset, and then in primates
Resumo:
In the present work, we investigated behavioral changes associated with the increase in Zif268 protein expression within telencephalic areas of the tropical lizard Tropidurus hispidus that correspond to the mammalian hippocampus (HC). We used 13 male individuals of this species, collected at the Federal Agrotechnical School of Rio Grande do Norte, under SISBIO license number 19561-1. Four animals had their brains removed and were submitted to a Western blot with antibodies for the Zif268 protein. The remaining animals were separated in two different groups: a control group (n=4) and an exploration group (n=5). Animals from the exploration group were exposed to an enriched environment with many sensory cues novel to them. Control group animals stayed in the environment they were already habituated to. After 90 min from the onset of exposure to the new environment, animals from both groups were submitted to intracardiac perfusion with fixative, and the brains were removed, cryoprotected and frozen. After that, brains were sectioned at 20 μm and the sections were subjected to immunohistochemistry for the Zif268 protein. We verified that the Zif268 protein is likely conserved in the brain of T. hispidus, which showed antigenicity for the antibody anti-Zif268 made in mammals. In animals from the exploration group, we detected an increase of the Zif268 protein in the Septum, Striatum, Dorsoventricular Area and in cortical areas corresponding to the HC. This increase was proportional to the amount of environmental exploration, with maximum positive correlation in the hippocampal subareas Medial Cortex (R = 0.94 and p = 0.004) and Dorsomedial Cortex (R = 0.92 and p = 0.006). The data corroborate the notion that the reptilian hippocampus, as well as the mammalian HC, plays an important role in spatial exploration.
Resumo:
Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including as a neurotransmitter in the nervous system, in which may exert varied post-synaptic actions. Inside the neuro-axis, the location of 5-HT neurons is almost restricted to the raphe nuclei of the brainstem, such that 5-HT-immunoreactivity can be considered a marker of the raphe nuclei. The raphe nuclei are located in the brainstem, at or near the midline. The serotonergic groups were originally alphanumerically classified as B1 to B9 towards caudorrostral in rats and can be divided into upper and lower groups. In this study the distribution of serotonergic neurons was studied using immunohistochemistry in the brain of the rock cavy (Kerodon rupestris), a species of rodent endemic to Northeastern Brazil. The cytoarchitectonic location of serotonergic neurons was established in series of adjacent coronal and sagittal sections stained by the Nissl method and immunohistochemistry for 5-HT. Thus, we defined the raphe rostral linear, caudal linear, dorsal, median, and paramedian pontine raphe nuclei, and B9 cluster, constituting the rostral group, and the interpositus, magnus, obscure and palidus, constituting the caudal part of the group, comparable to which has been described for other mammalian species
Resumo:
The hypothalamus is a diencephalic portion located around the third ventricle below the hypothalamic sulcus, limited by the optic chiasm, and by the mammillary bodies, acting as a center that integrates behavioral and homeostatic functions. Serotonin is a neurotransmitter produced in limited sites in the midbrain and brain stem, but is distributed throughout the central nervous system and has many functions, acting through specific receptors that are also distributed throughout the nervous system. Using immunohistochemical techniques, the aim of this study was to delineate the hypothalamic nuclei of the marmoset (Callithrix jacchus) and study the distribution of serotonin transporter and serotonin receptors in the hypothalamus of this species. We used the Nissl method to determine the cytoarchitecture of the hypothalamic nuclei, and immunohistochemistry to reveal the presence of NeuN as a method to determine the contours of the hypothalamic nuclei. As a result, we found serotonin containing fibers and terminals throughout the rostrocaudal extent of the hypothalamus, more concentrated in some nuclei, and even absent in some. Like serotonin, serotonin transporter was observed between pre-optic area and tuberal region of the hypothalamus, in densities and distribution similar to serotonin. The 5-HT1A and 5-HT1B receptors were found with minor differences among itselves regarding the disposition and intensity of staining.
Resumo:
The 3-hydroxytyramine/dopamine (DA) is a monoamine of catecholamineric group and consists in the progenitor substantia of synthesis of noradrenaline and adrenaline, having the enzyme tyrosine hydroxylase as a regulator of this process. Nuclei of midbrain expressing DA are the retrorubral field (RRF, A8 group), the substantia nigra pars compacta (SNc, A9 group) and the ventral tegmental area (VTA, A10 group). These nuclei are involved in three complex circuitry called mesostriatal, mesocortical and mesolimbic, which are related directly with various behavioral manifestations such as motor control, reward signaling in behavioural learning, motivation and pathological manifestations of Parkinson s disease and schizophrenia. The aim of this study was describe the morphology of midbrain dopaminergic neurons (A8, A9 and A10) of the rock cavy (Kerodon rupestris), a rodent belonging to the family Caviidae typical of the Brazilian Northeast, which is being adopted as a model for neuroanatomical studies in laboratory of neuroanatomy of the Federal University of Rio Grande do Norte. Coronal sections of brains of the rock cavies were submitted to staining by Nissl s method and immunohistochemistry against tyrosine hydroxylase. The nuclear organization of the midbrain dopaminergic nuclei of the rock cavy is very similar to that found in other animals of the order Rodentia, except by the presence of the tail of substantia nigra, which was found only in the studied species. We concluded that the midbrain dopaminergic nuclei are phylogenetically stable among species, but we think to be it necessary to expand the studies about the particularity found the rock cavy, investigating its occurrence in other species of rodents or investigating its functional relevance
Resumo:
The protozoan parasite Toxoplasma gondii transforms the innate aversion of rats for cat urine into a fatal attraction, that increases the likelihood of the parasite completing its life cycle in the cat s intestine. The neural circuits implicated in innate fear, anxiety, and learned fear all overlap considerably, raising the possibility, that T. gondii may disrupt all of these nonspecifically. In this study, we evaluated immunoreactivity for tyrosine hydroxylase (TH) in areas associated with innate fear of infected male swiss mice. The latent Toxoplasma infection converted the aversion of mice to feline odors into attraction. This loss of fear is remarkably specific, as demonstrated by Vyas et al (2007), because infection did not diminish learned fear, anxiety-like behavior, olfaction, or nonaversive learning. However, the neurochemical mechanism related to alterations in innate fear due to T. gondii infection remains poorly studied. 20 mice were inoculated with bradyzoites (25 cysts) from a Toxoplasma gondii (Me-49 strain). The brains were removed after 60 days, sectioned and processed for TH immunohistochemistry. The correlation between the amount of cysts per area and the densitometric analysis of neurotransmitter reactivity was low in the areas implicated in innate fear of infected animals, when comparated with noninfected controls
Resumo:
The midline/intralaminar nuclei form a remarkable group of nuclei of the medial and dorsal thalamus. The midline nuclei, in rats, comprises the paratenial nuclei (PT), paraventricular (PV), intermediodorsal (IMD), reuniens (Re) and rhomboid (Rh). The intralaminar nuclei comprises the central medial (CM), paracentral (PC), central lateral (CL) and parafascicular (PF). Such nuclei have dense serotonergic innervation originating from the brainstem, especially from the so-called ascending activation system. These nuclei, in turn, send projections to various cortical and subcortical areas, specifically to limbic areas, which suggests the important role of this neurotransmitter in the limbic circuitry. The aim of this study was to characterize the distribution pattern and morphology of serotonin fibers in the nuclei of the midline and intralaminar thalamic of rocky cavy (Kerodon rupestris), a tipical rodent from brazilizan northeast. To reach this aim we used four rock cavies adults. Following the transcardially perfusion with paraformaldehyde and brain microtomy steps was performed immunohistochemistry for serotonin (5-HT), Nissl technique and subsequent achievement and image analysis to characterize the cytoarchitecture of these nuclei and the serotonergic fibers visualized. An analysis was made of Relative Optical Density (ROD) to semi-quantify the concentration of serotonin fibers in the areas of interest. Thus, we observed a cytoarchitectonic arrangement of these nuclei similar to that found in rats. In case of fibers distribution, those immunoreactive to 5-HT were presented in a higher concentration according as ROD in the midline nuclei relative to intralaminar; Re being the core which has a higher pixel value followed by the PV , Rh, IMD and PT. In intralaminar CL showed higher pixels, followed by nuclei CM, PC and PF. The serotonergic fibers were classified as number of varicosities and axon diameter, therefore find three types of fibers distributed through this nuclear complex: fibers rugous, granular and semi-granular. In PV fibers predominated rugous; in PT fibers predominated granular; IMD, CL and PF fibers were represented by semi-granular and Re, Rh, PC and CM fibers showed granular and semi-granular. Morphological characterization of serotonergic fibers and differences in density between the nuclei may suggest different patterns of synaptic organization of this neurotransmitter beyond confirming his large repertoire functional
Resumo:
Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)