973 resultados para Ground Penetration Radar
Resumo:
It has previously been postulated that L-arginine emitted by penetrating Schistosoma mansoni cercariae serves as an intraspecific signal guiding other cercariae to the penetration site. It was suggested that penetrating in groups offers a selective advantage. If this hypothesis is correct and group penetration at one site on the host offers an advantage, it would follow that at such a site, successive groups of cercariae would be able to penetrate skin in either greater numbers or at a faster rate. This prediction was tested by the use of an in vitro model of cercarial penetration based on the Franz cell and using human skin. It was demonstrated that there was no increase in the percentage of cercariae able to penetrate the skin with subsequent exposures. Consequently, it seems unlikely that the release of L-arginine by cercariae during penetration could have evolved as a specific orientation system based on a selective advantage offered by group penetration.
Resumo:
Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
This article examines the history of social work research within the UK from a perspective of evidence-based practice, as originally advocated in the 1990s. It reviews the progress made to date in relation to the use of experimental studies in the field of children and families, and the reasons why this remains limited. It sets this in the broader context of evidence-based practice and the education and training of qualifying and post-qualifying social workers, including postgraduate training.