855 resultados para Fuzzy rules
Resumo:
Twitter has become a dependable microblogging tool for real time information dissemination and newsworthy events broadcast. Its users sometimes break news on the network faster than traditional newsagents due to their presence at ongoing real life events at most times. Different topic detection methods are currently used to match Twitter posts to real life news of mainstream media. In this paper, we analyse tweets relating to the English FA Cup finals 2012 by applying our novel method named TRCM to extract association rules present in hash tag keywords of tweets in different time-slots. Our system identify evolving hash tag keywords with strong association rules in each time-slot. We then map the identified hash tag keywords to event highlights of the game as reported in the ground truth of the main stream media. The performance effectiveness measure of our experiments show that our method perform well as a Topic Detection and Tracking approach.
Resumo:
Report for the DETR on the operation of the Crichel Down Rules (July 2000). The Crichel Down Rules are non-statutory rules relating to the offer back to the previous owners of surplus government land that was acquired from the previous owners by, or under the threat of, compulsory purchase.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
Purpose – The purpose of this paper is to investigate to what extent one can apply experiential learning theory (ELT) to the public-private partnership (PPP) setting in Russia and to draw insights regarding the learning cycle ' s nature. Additionally, the paper assesses whether the PPP case confirms Kolb ' s ELT. Design/methodology/approach – The case study draws upon primary data which the authors collected by interviewing informants including a PPP operator ' s managers, lawyers from Russian law firms and an expert from the National PPP Centre. The authors accomplished data source triangulation in order to ensure a high degree of research validity. Findings – Experiential learning has resulted in a successful and a relatively fast PPP project launch without the concessionary framework. The lessons learned include the need for effective stakeholder engagement; avoiding being stuck in bureaucracy such as collaboration with Federal Ministries and anti-trust agency; avoiding application for government funding as the approval process is tangled and lengthy; attracting strategic private investors; shaping positive public perception of a PPP project; and making continuous efforts in order to effectively mitigate the public acceptance risk. Originality/value – The paper contributes to ELT by incorporating the impact of social environment in the learning model. Additionally, the paper tests the applicability of ELT to learning in the complex organisational setting, i.e., a PPP.
Resumo:
In the global construction context, the best value or most economically advantageous tender is becoming a widespread approach for contractor selection, as an alternative to other traditional awarding criteria such as the lowest price. In these multi-attribute tenders, the owner or auctioneer solicits proposals containing both a price bid and additional technical features. Once the proposals are received, each bidder’s price bid is given an economic score according to a scoring rule, generally called an economic scoring formula (ESF) and a technical score according to pre-specified criteria. Eventually, the contract is awarded to the bidder with the highest weighted overall score (economic + technical). However, economic scoring formula selection by auctioneers is invariably and paradoxically a highly intuitive process in practice, involving few theoretical or empirical considerations, despite having been considered traditionally and mistakenly as objective, due to its mathematical nature. This paper provides a taxonomic classification of a wide variety of ESFs and abnormally low bids criteria (ALBC) gathered in several countries with different tendering approaches. Practical implications concern the optimal design of price scoring rules in construction contract tenders, as well as future analyses of the effects of the ESF and ALBC on competitive bidding behaviour.
Resumo:
This paper, the second in a series of three papers concerned with the statistical aspects of interim analyses in clinical trials, is concerned with stopping rules in phase II clinical trials. Phase II trials are generally small-scale studies, and may include one or more experimental treatments with or without a control. A common feature is that the results primarily determine the course of further clinical evaluation of a treatment rather than providing definitive evidence of treatment efficacy. This means that there is more flexibility available in the design and analysis of such studies than in phase III trials. This has led to a range of different approaches being taken to the statistical design of stopping rules for such trials. This paper briefly describes and compares the different approaches. In most cases the stopping rules can be described and implemented easily without knowledge of the detailed statistical and computational methods used to obtain the rules.
Resumo:
This paper examines the extent to which engineers can influence the competitive behavior of bidders in Best Value or multi-attribute construction auctions, where both the (dollar) bid and technical non-price criteria are scored according to a scoring rule. From a sample of Spanish construction auctions with a variety of bid scoring rules, it is found that bidders are influenced by the auction rules in significant and predictable ways. The bid score weighting, bid scoring formula and abnormally low bid criterion are variables likely to influence the competitiveness of bidders in terms of both their aggressive/conservative bidding and concentration/dispersion of bids. Revealing the influence of the bid scoring rules and their magnitude on bidders’ competitive behavior opens the door for the engineer to condition bidder competitive behavior in such a way as to provide the balance needed to achieve the owner’s desired strategic outcomes.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.
Resumo:
We calculate the form factors and the coupling constant in the D*D rho vertex in the framework of QCD sum rules. We evaluate the three-point correlation functions of the vertex considering D, rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g(D*D rho) = 4.3 +/- 0.9 GeV(-1). (C) 2011 Elsevier B.V. All rights reserved.