On the efficiency of evolutionary fuzzy clustering


Autoria(s): CAMPELLO, Ricardo J. G. B.; HRUSCHKA, Eduardo R.; ALVES, Vinicius S.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.

Identificador

JOURNAL OF HEURISTICS, v.15, n.1, p.43-75, 2009

1381-1231

http://producao.usp.br/handle/BDPI/28780

10.1007/s10732-007-9059-6

http://dx.doi.org/10.1007/s10732-007-9059-6

Idioma(s)

eng

Publicador

SPRINGER

Relação

Journal of Heuristics

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Fuzzy clustering #Evolutionary algorithms #Complexity analyses #Performance comparison #C-MEANS #PIXEL CLASSIFICATION #VALIDITY #ALGORITHMS #STRATEGIES #REDUCTION #EXTENSION #INDEXES #Computer Science, Artificial Intelligence #Computer Science, Theory & Methods
Tipo

article

original article

publishedVersion