997 resultados para Electrons
Resumo:
The transient current response of a-Si:H in both p/i/n and n/i/n structures has been measured as a function of pulse intermittence and pulse amplitude. The results are consistent with the picture that in p/i/n samples the peculiar current response is caused by the competing contributions of electrons and holes which show themselves in different time scales.
Resumo:
Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.
Resumo:
The energy spectrum and the persistent currents are calculated for finite-width mesoscopic annular structures with radial potential barrier in the presence of a magnetic field. The introduction of the tunneling barrier leads to the creation of extra edge states around the barrier and the occurrence of oscillatory structures superimposed on the bulk Landau level plateaus in the energy spectrum. We found that the Fermi energy E-F increases with the number of electrons N emerging many kinks. The single eigenstate persistent current exhibits complicated structures with vortex-like texture, ''bifurcation'', and multiple ''furcation'' patterns as N is increased. The total currents versus N display wild fluctuations.
Resumo:
By using the recently developed exact effective-mass envelope-function theory, the electronic structures of InAs/GaAs strained superlattices grown on GaAs (100) oriented substrates are studied. The electron and hole subband structures, distribution of electrons and holes along the growth direction, optical transition matrix elements, exciton states, and absorption spectra are calculated. In our calculations, the effects due to the different effective masses of electrons and holes in different materials and the strain are included. Our theoretical results are in agreement with the available experimental data.
Resumo:
Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.
Resumo:
The energetics, lattice relaxation, and the defect-induced states of st single O vacancy in alpha-Al2O3 are studied by means of supercell total-energy calculations using a first-principles method based on density-functional theory. The supercell model with 120 atoms in a hexagonal lattice is sufficiently large to give realistic results for an isolated single vacancy (square). Self-consistent calculations are performed for each assumed configuration of lattice relaxation involving the nearest-neighbor Al atoms and the next-nearest-neighbor O atoms of the vacancy site. Total-energy data thus accumulated are used to construct an energy hypersurface. A theoretical zero-temperature vacancy formation energy of 5.83 eV is obtained. Our results show a large relaxation of Al (O) atoms away from the vacancy site by about 16% (8%) of the original Al-square (O-square) distances. The relaxation of the neighboring Al atoms has a much weaker energy dependence than the O atoms. The O vacancy introduces a deep and doubly occupied defect level, or an F center in the gap, and three unoccupied defect levels near the conduction band edge, the positions of the latter are sensitive to the degree of relaxation. The defect state wave functions are found to be not so localized, but extend up to the boundary of the supercell. Defect-induced levels are also found in the valence-band region below the O 2s and the O 2p bands. Also investigated is the case of a singly occupied defect level (an F+ center). This is done by reducing both the total number of electrons in the supercell and the background positive charge by one electron in the self-consistent electronic structure calculations. The optical transitions between the occupied and excited states of the: F and F+ centers are also investigated and found to be anisotropic in agreement with optical data.
Resumo:
The electronic structure of a microporous titanosilicate framework, ETS-10 is calculated by means of a first-principles self-consistent method. It is shown that without the inclusion of the alkali atoms whose positions in the framework are unknown, ETS-10 is an electron deficient system with 32 electrons per unit cell missing at the top of an otherwise semiconductor-like band structure. The calculated density of slates are resolved into partial components. It is shown that the states of the missing electrons primarily originate from the Ti-O bond. The local density of states of the Ti-3d orbitals in the ETS-10 framework is quite different from the perovskite BaTiO3. The possibilities of ETS-10 crystal being ferroelectric or having other interesting properties are discussed.
Resumo:
In this paper, we propose the periodic boundary condition which can be applied to a variety of semiconductor nanostructures to overcome che difficulty of solving Schrodinger equation under the natural boundary condition. When the barrier width is large enough. the average of the maximum and minimum of energy band under the periodic boundary condition is very close to the energy level obtained under the natural boundary condition. As an example, we take the GaAs/Ga1-xAlxAs system, If the width of the Ga1-xAlxAs barrier is 200 Angstrom, the average of the maximum and minimum of energy band of the GaAs/Ga1-xAlxAs superlattices is very close to the energy level of the GaAs/Ga1-xAlxAs quantum wells (QWs). We give the electronic structure effective mass calculation of T-shaped quantum wires (T-QWRs) under the periodic boundary condition, The lateral confinement energies E1D-2D of electrons and holes, the energy difference between T-QWRs and QWs, are precisely determined.
Resumo:
We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.
Resumo:
Here we report the electron migration by photo- or thermostimulation in BaFCl:Eu2+. Electrons released from F centers may be trapped by other defect sites to form F aggregates or another type of F center and vice versa. This migration reduces the photostimulated luminescence efficiency, lowers the imaging plate sensitivity, and causes the difference between the optical absorption and photostimulation spectra of color centers. (C) 1997 American Institute of Physics.
Resumo:
We have conducted numerical studies of ballistic electron transport in a semiconductor II-structure when an external transverse electric field is applied. The device conductance as a function of electron energy and the strength of the transverse electric field is calculated on the basis of tight-binding Green's function formalism. The calculations show that a relatively weak electric field can induce very large decrease in the electron transmission across the structure. When the transverse electric field is sufficiently strong, electrons can hardly be transported through the device. Thus the performance of the device can be greatly improved for it is much easier to control electron transport through the device with an external transverse electric field.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
The magnetotransport properties of the two-dimensional (2D) electron gas confined in a modulation-doped Zn0.80Cd0.20Se/ZnS0.06Se0.94 single quantum well structure were studied at temperatures down to 0.35 K in magnetic fields up to 7.5 T. Well resolved 2D Shubnikovde Haas (SdH) oscillations were observed, although the conductivity of the sample in the as grown state was dominated by a bulk parallel conduction layer. After removing most of the parallel conduction layer by wet chemical etching the amplitude and number of SdH oscillations increased. From the temperature dependence of the amplitude the effective mass of the electrons was estimated as 0.17 m(0). Copyright (C) 1996 Published by Elsevier Science Ltd