913 resultados para Curvelet transform
Resumo:
Regardless of your industry, the marketplace is continually evolving. The reason, increasingly, is the evolution of disruptive technology. Disruptive technologies are enhanced or new technological innovations that essentially displace conventional and established technology, rendering it obsolete. They can create opportunities for new products, new markets, and new ways of conducting business. In 2016, business models will again change as businesses adapt. The enhancement of current technology and the development of new technological innovations will undeniably transform how new businesses are established, and how existing businesses compete. For small and medium-sized firms, technology will also enable significant leaps forward in terms of innovation, efficiency and competitiveness. Adapting quickly will be essential, so here’s the top six we think you should be prepared for.
Resumo:
Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.
Resumo:
Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
A transformation is suggested which can transform a non-Gaussian monthly hydrological time series into a Gaussian one. The suggested approach is verified with data of ten Indian rainfall time series. Incidentally, it is observed that once the deterministic trends are removed, the transformation leads to an uncorrelated process for monthly rainfall. The procedure for normalization is general enough in that it should be also applicable to river discharges. This is verified to a limited extent by considering data of two Indian river discharges.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
By using a method originally due to Okubo we calculate the momentum-space superpropagator for a nonpolynomial field U(x)=1 / [1+fφ(x)] both for a massless and a massive neutral scalar φ(x) field. For the massless case we obtain a representation that resembles the weighted superposition of propagators for the exchange of a group of scalar fields φ(x) as is intuitively expected. The exact equivalence of this representation with the propagator function which has been obtained earlier through the use of the Fourier transform of a generalized function is established. For the massive case we determine the asymptotic form of the superpropagator.
Resumo:
New glasses of 16.66SrO–16.66[(1 − x)Bi2O3–xSm2O3]–16.66Nb2O5–50Li2B4O7 (0 ≤ x ≤ 0.5, in molar ratio), i.e., the pseudo-binary Sm2O3-doped SrBi2Nb2O9–Li2B4O7 glass system, giving the crystallization of Sm3+-doped SrBi2Nb2O9 nanocrystals are developed. It is found that the thermal stability of the glasses against the crystallization and the optical band gap energy increases with increasing Sm2O3 content. The formation of fluorite-type Sm3+-doped SrBi2Nb2O9 nanocrystals (diameters: 13–37 nm) with a cubic structure is confirmed in the crystallized (530 °C, 3 h) samples from X-ray powder diffraction analyses, Raman scattering spectrum measurements, and transmission electron microscope observations. The effect of Sm3+-doping on the microstructure, Raman scattering peak positions, and dielectric properties of composites comprising of fluorite-type SrBi2Nb2O9 nanocrystals and the Li2B4O7 glassy phase is clarified. It is found that fluorite-type SrBi2Nb2O9 nanocrystals transform to stable perovskite-type SrBi2Nb2O9 crystals with an orthorhombic structure by heat treatments at around 630 °C.
Resumo:
Uusien polymeeripohjaisten teknologioiden ja materiaalien myötä räätälöityjen polymeerien tarve on kasvanut. Viime vuosituhannen lopussa kehitetyt kontrolloidut polymerointimenetelmät ovat avanneet uusia mahdollisuuksia paitsi monimutkaisten polymeerien synteesiin, myös itsejärjestyvyyteen perustuvien funktionaalisten nanorakenteiden suunnitteluun ja valmistukseen. Nämä voivat jäljitellä luonnossa esiintyviä rakenteita, joita muodostavat esimerkiksi lipidit ja proteiinit. Itsejärjestyvät molekyylit ovat usein amfifiilisiä eli ne koostuvat hydrofiilisistä ja hydrofobisista osista ja polymeereissä nämä osat voivat olla omina lohkoinaan, jolloin puhutaan amfifiilisistä lohko- tai blokkikopolymeereistä. Riippuen järjestyneiden rakenteiden koostumuksesta ja muodosta, amfifiilisiä blokkikopolymeerejä on tutkittu tai jo käytetty nanoteknologiassa, elastomeereissä, voiteluaineissa, pinta-aktiivisina aineina, lääkkeenannostelussa, maaleissa, sekä elektroniikka-, kosmetiikka- ja elintarviketeollisuudessa. Tavallisimmin käytetyt amfifiiliset blokkikopolymeerit ovat olleet lineaarisia, mutta viime aikoina tutkimus on suuntautunut kohti monimutkaisempia rakenteita. Tällaisia ovat esimerkiksi tähtipolymeerit. Tähtimäisissä polymeereissä miselleille tyypillinen ydin-kuori-rakenne säilyy hyvin alhaisissakin polymeerikonsentraatioissa, koska polymeeriketjut ovat kiinni toisissaan yhdessä pisteessä. Siten ne ovat erityisen kiinnostavia tutkimuskohteita erilaisten hydrofobisten orgaanisten yhdisteiden sitomiseksi ja vapauttamiseksi. Tässä työssä on tarkasteltu amfifiilisten tähtipolymeerien itsejärjestymistä vesiliuoksissa sekä kokeellisesti ja tietokonesimulaatioin. Työ koostuu kahdesta osasta: tähtipolymeerien synteesistä makrosyklisillä initiaattoreilla ja amfifiilisten tähtimäisten blokkikopolymeerien ominaisuuksien tutkimisesta.
Resumo:
Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.
Resumo:
This doctoral thesis deals with the syntheses of olefin homo- and copolymers using different kind of metallocene catalyst. Ethene, propene, 1-hexene, 1-hexadecene, vinylcyclohexane and phenylnorbornene were homo- or copolymerized with the catalysts. The unbridged benzyl substituted zirconium dichloride catalysts (1-4), ansa- bridged acenaphtyl substituted zirconium dichloride catalysts, ( 5, 6), rac- and meso-ethylene-bis(1-indenyl)zirconium dichlorides, (rac- and meso-8), rac-ethylene-bis(1-indenyl)hafnium dichloride, ( 12), bis(9-fluorenyl)hafnium dichloride (14 ) enantiomerically pure (R)- phenylethyl[(9-fluorenyl-1-indenyl)]ZrCl2, (11), 14 and asymmetric dimethylsilyl[(3-benzylindenyl-(2-methylbenzen[e]indenyl)] zirconium dichloride, (13), were prepared in our laboratory. Dimethylsilyl-bis(1-indenyl)zirconium dichloride, (9), isopropylidene(9-fluorenyl-cyclopentadienyl)zirconium dichloride, (10), and were obtained commercially. The solid-state structures of the catalysts rac- and meso-1 were determined by X-ray crystallography. Computational methods were used for the structure optimization of the catalyst rac- and meso-1 in order to compare the theoretical calculations with the experimental results. Polymerization experiments were conducted in a highly purified autoclave system using low pressures (< 5 bar) of gaseous monomers. The experiments were designed to attain the optimal catalytic activity and a uniform copolymer composition. The prepared homo- and copolymers were characterized by the gel permeation chromatography, GPC, differential scanning calorimetry, DSC, nuclear magnetic resonance, NMR, and Fourier transform infrared spectrometry, FTIR . Molar mass (Mw, Mn), molar mass distribution (Mw/Mn), tacticity, comonomer content, melting temperature, glass transition temperature, and end group structures and content were determined. A special attention was paid on the correlation of the polymer properties with the catalyst structures and polymerization conditions. An intramolecular phenyl coordination was found in phenyl substituted benzyl zirconocenes 1-3 explaining the decreased activity of the catalysts. Novel copolymers poly(propene-co-phenylnorbornene) and poly(propene co-vinylcyclohexane), were synthesized and high molar mass poly(ethene-co-1-hexene) and poly(ethene-co-1-hexadecene) copolymers with elastic properties were prepared. Activation of a hafnocene catalyst was studied with UV-Vis spectrometry and activation process for the synthesis of ultra high molar mass poly(1-hexene) was found out.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.
Resumo:
This thesis contains five experimental spectroscopic studies that probe the vibration-rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised continuous wave laser as a source. In the other two experiments, the same laser is actively frequency stabilised to the ringdown cavity. This development allows for increased repetition rate of the experimental signal and thus the spectroscopic sensitivity of the method is improved. These setups are applied to the recording of several vibration-rotation overtone bands of both H(12)C(12)CH and H(13)C(13)CH. An intra-cavity laser absorption spectroscopy setup that uses a commercial continuous wave ring laser and a Fourier transform interferometer is presented. The configuration of the laser is found to be sub-optimal for high-sensitivity work but the spectroscopic results are good and show the viability of this type of approach. Several ro-vibrational bands of carbon-13 substituted acetylenes are recorded and analysed. Compared with earlier work, the signal-to-noise ratio of a laser-induced dispersed infrared fluorescence experiment is enhanced by more than one order of magnitude by exploiting the geometric characteristics of the setup. The higher sensitivity of the spectrometer leads to the observation of two new symmetric vibrational states of H(12)C(12)CH. The precision of the spectroscopic parameters of some previously published symmetric states is also improved. An interesting collisional energy transfer process is observed for the excited vibrational states and this phenomenon is explained by a simple step-down model.
Resumo:
Solid solutions of the formula La2−xLnxCuO4 (Ln = Pr, Nd) possess the orthorhombic structure of La2CuO4 for small values of x and transform to the tetragonal Nd2CuO4 structure at a critical value of x. At the critical composition, there is an abrupt change in specific volume as well as the Image ratio. The material exhibits temperature-independent electrical resistivity below the critical value x and semiconducting behaviour above it. The specific volume and Image ratio smoothly decrease with increase in x in the La2Cu1−xNixO4 system, although the solid solution possess the tetragonal K2NiF4 structure when x>0.1. Compositions with x>0.1 exhibit a gradual semiconductor metal transition similar to that of La2NiO4, the transition temperature decreasing with increasing