986 resultados para Cantilever slab


Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a concrete slab experiences differential volume change due to temperature, moisture, and shrinkage gradients, it deforms. The stresses induced by these differential volume changes can reduce the pavement’s fatigue life. Differential volume change is quantified by the equivalent temperature difference required to deform a comparable flat slab to the same shape as the actual slab. This thesis presents models to predict the equivalent temperature difference due to moisture warping and differential drying shrinkage. Moisture warping occurs because a portion of drying shrinkage is reversible, while differential drying shrinkage is due to the irreversible portion of drying shrinkage. The amount of reversible shrinkage was investigated for concretes made with different types of aggregate, including lightweight and recycled. Another source of differential volume change is built-in curl, which is caused by temperature gradients at the time of paving. This thesis also presents a comparison of methods used to quantify built-in curl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-service hardened concrete pavement suffers from environmental loadings caused by curling and warping of the slab. Traditionally, these loadings are computed on the basis of treating the slab as an elastic material, and of evaluating separately the curling and warping components. This dissertation simulates temperature distribution and moisture distribution through the slabs by use of a developed numerical model that couples the heat transfer and moisture transport. The computation of environmental loadings treats the slab as an elastic-viscous material, which considers the relaxation behavior and Pickett effect of the concrete. The heat transfer model considers the impacts of solar radiation, wind speed, air temperature, pavement slab albedo, etc. on the pavement temperature distribution. This dissertation assesses the difference between documented models that aim to predict pavement temperature, highlighting their pros and cons. The moisture transport model is unique for the documented models; it mimics the wetting and drying events occurring at the slab surface. These events are estimated by a proposed statistical algorithm, which is verified by field rainfall data. Analysis of the predicted results examines on the roles of the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution through the slab. The findings reveal that seasonal air RH plays a decisive role on the slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, and seasonal rainfall pattern plays only a secondary role. This dissertation sheds light on the computation of environmental loadings that in-service pavement slabs suffer from. Analysis of the computed stresses centers on the stress relaxation near the surface, stress evolution after the curing ends, and the impact of construction season on the stress‘s magnitude. An unexpected finding is that the total environmental loadings at the cyclically-stable state divert from the thermal stresses. At such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas the total stress during the nighttime is far greater than the thermal stress. An explanation for this phenomenon is that during the night hours, the decline of the slab‘s near-surface temperature leads to a drop of the near-surface RH. This RH drop results in contraction therein and develops additional tensile stresses. The dissertation thus argues that estimating the environmental loadings by solely computing the thermally-induced stresses may reach delusive results. It recommends that the total environmental loadings of in-service slabs should be estimated by a sophisticated model coupling both moisture component and temperature component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testing a new method of nanoindentation using the atomic force microscope (AFM) was the purpose of this research. Nanoindentation is a useful technique to study the properties of materials on the sub-micron scale. The AFM has been used as a nanoindenter previously; however several parameters needed to obtain accurate results, including tip radius and cantilever sensitivity, can be difficult to determine. To solve this problem, a new method to determine the elastic modulus of a material using the atomic force microscope (AFM) has been proposed by Tang et al. This method models the cantilever and the sample as two springs in a series. The ratio of the cantilever spring constant (k) to diameter of the tip (2a) is treated in the model as one parameter (α=k/2a). The value of a, along with the cantilever sensitivity, are determined on two reference samples with known mechanical properties and then used to find the elastic modulus of an unknown sample. To determine the reliability and accuracy of this technique, it was tested on several polymers. Traditional depth-sensing nanoindentation was preformed for comparison. The elastic modulus values from the AFM were shown to be statistically similar to the nanoindenter results for three of the five samples tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To prospectively assess the diagnostic accuracy of nonenhanced three-dimensional (3D) steady-state free precession (SSFP) magnetic resonance (MR) angiography for detection of renal artery stenosis (RAS), with breath-hold contrast material-enhanced MR angiography performed as the reference standard. MATERIALS AND METHODS: The study was local ethics committee approved; all patients gave written informed consent. Fifty-three patients (30 male, 23 female; mean age, 58 years) with arterial hypertension and suspected of having RAS were examined with 1.5-T 3D SSFP renal MR angiography. Stenosis grade, maximal visible vessel length, and subjective image quality were compared. Sensitivity, specificity, accuracy, and negative predictive value (NPV) were calculated on artery-by-artery and patient-by-patient bases. The significance of the results was assessed with the paired two-sided t test for continuous variables and with the marginal homogeneity test for categorical variables. Cohen kappa statistics were used to estimate interobserver agreement. RESULTS: One hundred eight renal arteries with 20 significant (>or=50%) stenoses were detected with contrast-enhanced MR angiography. At artery-by-artery analysis, sensitivity, specificity, accuracy, and NPV of nonenhanced SSFP MR angiography for RAS detection were 100%, 93%, 94%, and 100%, respectively, for observer 1 and 95%, 95%, 95%, and 99%, respectively, for observer 2. Corresponding patient-by-patient values were 100%, 92%, 94%, and 100%, respectively, for observer 1 and 100%, 95%, 96%, and 100%, respectively, for observer 2. Overestimation of stenosis grade with SSFP MR angiography resulted in six and four false-positive findings for readers 1 and 2, respectively. Mean maximal visible lengths of the renal arteries were 69.9 mm at contrast-enhanced MR angiography and 61.1 mm at SSFP MR angiography (P<.001). Both techniques yielded good to excellent image quality. CONCLUSION: Slab-selective inversion-prepared 3D SSFP MR angiography had high sensitivity, specificity, accuracy, and NPV for RAS detection, without the need for contrast material. However, RAS severity was overestimated in some patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To systematically appraise the impact of mechanical/technical risk factors on implant-supported reconstructions. MATERIAL AND METHODS: A MEDLINE (PubMed) database search from 1966 to April 2008 was conducted. The search strategy was a combination of MeSH terms and the key words: design, dental implant(s), risk, prosthodontics, fixed prosthodontics, fixed partial denture(s), fixed dental prosthesis (FDP), fixed reconstruction(s), oral rehabilitation, bridge(s), removable partial denture(s), overdenture(s). Randomized controlled trials, controlled trials, and prospective and retrospective cohort studies with a mean follow-up of at least 4 years were included. The material evaluated in each study had to include cases with/without exposure to the risk factor. RESULTS: From 3,568 articles, 111 were selected for full text analysis. Of the 111 articles, 33 were included for data extraction after grouping the outcomes into 10 risk factors: type of retentive elements supporting overdentures, presence of cantilever extension(s), cemented versus screw-retained FDPs, angled/angulated abutments, bruxism, crown/implant ratio, length of the suprastructure, prosthetic materials, number of implants supporting an FDP, and history of mechanical/technical complications. CONCLUSIONS: The absence of a metal framework in overdentures, the presence of cantilever extension(s) > 15 mm and of bruxism, the length of the reconstruction, and a history of repeated complications were associated with increased mechanical/technical complications. The type of retention, the presence of angled abutments, the crown-implant ratio, and the number of implants supporting an FDP were not associated with increased mechanical/technical complications. None of the mechanical/technical risk factors had an impact on implant survival and success rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To report a novel observation of neutrophil signal transduction abnormalities in patients with localized aggressive periodontitis (LAP) that are associated with an enhanced phosphorylation of the nuclear signal transduction protein cyclic AMP response element-binding factor (CREB). METHOD AND MATERIALS: Peripheral venous blood neutrophils of 18 subjects, 9 patients with LAP and 9 race-, sex-, and age-matched healthy controls, were isolated and prepared using the Ficoll-Hypaque density-gradient technique. Neutrophils (5.4 x 10(6)/mL) were stimulated with the chemoattractant FMLP (10(-6) mol/L) for 5 minutes and lysed. Aliquots of these samples were separated by SDS-PAGE (60 microg/lane) on 9.0% (w/v) polyacrylamide slab gels and transferred electrophoretically to polyvinyl difluoride membranes. The cell lysates were immunoblotted with a 1:1,000 dilution of rabbit-phospho-CREB antibody that recognizes only the phosphorylated form of CREB at Ser133. The activated CREB was visualized with a luminol-enhanced chemoluminescence detection system and evaluated by laser densitometry. RESULTS: In patients with LAP, the average activation of CREB displayed an overexpression for the unstimulated peripheral blood neutrophils of 80.3% (17.5-fold) compared to healthy controls (4.6%). CONCLUSION: LAP neutrophils who express their phenotype appear to be constitutively primed, as evidenced by activated CREB in resting cells compared to normal individuals. The genetically primed neutrophil phenotype may contribute to neutrophil-mediated tissue damage in the pathogenesis of LAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das generative Fertigungsverfahren Selective Laser Melting (SLM) wird zur direkten Herstellung von metallischen Funktionsbauteilen verwendet. Während des Bauprozesses entstehen durch den schichtweisen Aufbau und die lokale Energieeinbringung mittels eines fokussierten Laserstrahls thermisch induzierte Eigenspannungen, die zu Verzug des Bauteils oder von Bauteilbereichen führen können. Üblicherweise werden die Verzüge durch Stützstrukturen zwischen Bauteil und Substratplatte verhindert. Jedoch ist es nicht immer möglich alle Bereiche eines Bauteils, je nach Komplexität der Geometrie oder Zugänglichkeit, mit Stützstrukturen zu versehen bzw. diese wieder zu entfernen. Durch eine Vorwärmung der Substratplatte während des Bauprozesses können die Verzüge reduziert oder ganz vermieden werden. Jedoch ist bisher keine systematische Untersuchung des Einflusses der Vorwärmung auf Verzüge von Aluminium Bauteilen durchgeführt worden. Ziel dieser Arbeiten ist daher die systematische Untersuchung der Auswirkung einer Vorwärmung beim SLM von Aluminiumbauteilen und die Ermittlung der geeigneten Vorwärmtemperatur, bei der nahezu keine Verzüge mehr entstehen. Eine signifikante Verzugsreduzierung im Vergleich zu den Verzügen ohne Vorwärmung zeigt sich ab einer Vorwärmtemperatur von 150°C. Bei einer Vorwärmtemperatur von 250°C sind im Rahmen der Messgenauigkeit unabhängig von der untersuchten Twincantilever Testgeometrie keine Verzüge mehr feststellbar. Neben der Reduzierung der Verzüge verhindert die Vorwärmung außerdem spannungsbedingte Risse im Bauteil, die ohne Vorwärmung zum Abreißen von Teilen der Testgeometrie führen können. Mit 90 HV 0,1 bei 250°C Vorwärmtemperatur ist die Härte größer als die geforderte Mindesthärte nach DIN EN 1706 von Druckgussbauteilen aus dem Werkstoff AlSi10Mg. Aus diesem Ergebnis kann abgeleitet werden, dass eine Vorwärmtemperatur von 250°C geeignet ist, Bauteile aus dem Werkstoff AlSi10Mg mit SLM defektfrei und prozesssicher herzustellen und Verzüge vollständig zu vermeiden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES The aim was to study the impact of the defect size of endodontically treated incisors compared to dental implants as abutments on the survival of zirconia two-unit anterior cantilever-fixed partial dentures (2U-FPDs) during 10-year simulation. MATERIALS AND METHODS Human maxillary central incisors were endodontically treated and divided into three groups (n = 24): I, access cavities rebuilt with composite core; II, teeth decoronated and restored with composite; and III as II supported by fiber posts. In group IV, implants with individual zirconia abutments were used. Specimens were restored with zirconia 2U-FPDs and exposed to two sequences of thermal cycling and mechanical loading. Statistics: Kaplan-Meier; log-rank tests. RESULTS During TCML in group I two tooth fractures and two debondings with chipping were found. Solely chippings occurred in groups II (2×), IV (2×), and III (1×). No significant different survival was found for the different abutments (p = 0.085) or FPDs (p = 0.526). Load capability differed significantly between groups I (176 N) and III (670 N), and III and IV (324 N) (p < 0.024). CONCLUSION Within the limitations of an in vitro study, it can be concluded that zirconia-framework 2U-FPDs on decoronated teeth with/without post showed comparable in vitro reliability as restorations on implants. The results indicated that restorations on teeth with only access cavity perform worse in survival and linear loading. CLINICAL RELEVANCE Even severe defects do not justify per se a replacement of this particular tooth by a dental implant from load capability point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.