Accounting for warping and differential drying shrinkage mechanisms in the design of jointed plain concrete payments


Autoria(s): Lederle, Rita Elizabeth
Data(s)

01/01/2011

Resumo

When a concrete slab experiences differential volume change due to temperature, moisture, and shrinkage gradients, it deforms. The stresses induced by these differential volume changes can reduce the pavement’s fatigue life. Differential volume change is quantified by the equivalent temperature difference required to deform a comparable flat slab to the same shape as the actual slab. This thesis presents models to predict the equivalent temperature difference due to moisture warping and differential drying shrinkage. Moisture warping occurs because a portion of drying shrinkage is reversible, while differential drying shrinkage is due to the irreversible portion of drying shrinkage. The amount of reversible shrinkage was investigated for concretes made with different types of aggregate, including lightweight and recycled. Another source of differential volume change is built-in curl, which is caused by temperature gradients at the time of paving. This thesis also presents a comparison of methods used to quantify built-in curl.

Formato

application/pdf

Identificador

http://digitalcommons.mtu.edu/etds/251

http://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1250&context=etds

Publicador

Digital Commons @ Michigan Tech

Fonte

Dissertations, Master's Theses and Master's Reports - Open

Palavras-Chave #Civil and Environmental Engineering #Engineering
Tipo

text