895 resultados para Beta cell apoptosis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF- production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Male Irs2(-/-) mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2(-/-) mice. We identify retarded renal growth in male and female Irs2(-/-) mice, independent of diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.

Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.

Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Advanced JAX (TM) Bone Void Filler System (AJBVFS) is a novel bone graft material manufactured by Smith and Nephew Orthopaedics Ltd. and comprises beta tri-calcium phosphate granules with carboxymethylcellulose (CMC) gel as a handling agent. This study investigated the potential, in vitro, of the AJBVFS to function as a delivery system for cell therapy to enhance healing of bone defects. The attachment of rabbit bone marrow stromal cells (rbBMSCs), human BMSCs (hBMSCs) and human bone-derived cells (hBDCs) to JAX (TM) granules and the effect of CMC gel on cell proliferation and differentiation were investigated. There were slight species differences in the number and morphology of cells attached on the JAX (TM) granules with less rbBMSC attachment than human. All cells tolerated the presence of CMC gel and a reduction in cell number was only seen after longer exposure to higher gel concentrations. Low concentrations of CMC gel enhanced proliferation, alkaline phosphatase (ALP) expression and ALP activity in human cells but had no effect on rbBMSC. This study suggests that AJBVFS is an appropriate scaffold for the delivery of osteogenic cells and the addition of CMC gel as a handling agent promotes osteogenic proliferation and differentiation and is therefore likely to encourage bone healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage. (C) 2009 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is treated effectively with tyrosine kinase inhibitors (TKIs); however, 2 key problems remain-the insensitivity of CML stem and progenitor cells to TKIs and the emergence of TKI-resistant BCR-ABL mutations. BCR-ABL activity is associated with increased proteasome activity and proteasome inhibitors (PIs) are cytotoxic against CML cell lines. We demonstrate that bortezomib is antiproliferative and induces apoptosis in chronic phase (CP) CD34(+) CML cells at clinically achievable concentrations. We also show that bortezomib targets primitive CML cells, with effects on CD34(+)38(-), long-term culture-initiating (LTC-IC) and nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells. Bortezomib is not selective for CML cells and induces apoptosis in normal CD34(+)38(-) cells. The effects against CML cells are seen when bortezomib is used alone and in combination with dasatinib. Bortezomib causes proteasome but not BCR-ABL inhibition and is also effective in inhibiting proteasome activity and inducing apoptosis in cell lines expressing BCR-ABL mutations, including T315I. By targeting both TKI-insensitive stem and progenitor cells and TKI-resistant BCR-ABL mutations, we believe that bortezomib offers a potential therapeutic option in CML. Because of known toxicities, including myelosuppression, the likely initial clinical application of bortezomib in CML would be in resistant and advanced disease. (Blood. 2010;115:2241-2250)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed comprehensive genome-wide gene expression profiling (GEP) of extranodal nasal-type natural killer/T-cell lymphoma (NKTL) using formalin-fixed, paraffin-embedded tissue (n = 9) and NK cell lines (n = 5) in comparison with normal NK cells, with the objective of understanding the oncogenic pathways involved in the pathogenesis of NKTL and to identify potential therapeutic targets. Pathway and network analysis of genes differentially expressed between NKTL and normal NK cells revealed significant enrichment for cell cycle-related genes and pathways, such as PLK1, CDK1, and Aurora-A. Furthermore, our results demonstrated a pro-proliferative and anti-apoptotic phenotype in NKTL characterized by activation of Myc and nuclear factor kappa B (NF-kappa B), and deregulation of p53. In corroboration with GEP findings, a significant percentage of NKTLs (n = 33) overexpressed c-Myc (45.4%), p53 (87.9%), and NF-kappa B p50 (67.7%) on immunohistochemistry using a tissue microarray containing 33 NKTL samples. Notably, overexpression of survivin was observed in 97% of cases. Based on our findings, we propose a model of NKTL pathogenesis where deregulation of p53 together with activation of Myc and NF-kappa B, possibly driven by EBV LMP-1, results in the cumulative up-regulation of survivin. Down-regulation of survivin with Terameprocol (EM-1421, a survivin inhibitor) results in reduced cell viability and increased apoptosis in tumour cells, suggesting that targeting survivin may be a potential novel therapeutic strategy in NKTL. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major goal of molecular biology is to elucidate the mechanisms underlying cancer development and progression in order to achieve early detection, better diagnosis and staging and novel preventive and therapeutic strategies. We feel that an understanding of Runt-related transcription factor 3 (RUNX3)-regulated biological pathways will directly impact our knowledge of these areas of human carcinogenesis. The RUNX3 transcription factor is a downstream effector of the transforming growth factor-beta (TGF-beta) signaling pathway, and has a critical role in the regulation of cell proliferation and cell death by apoptosis, and in angiogenesis, cell adhesion and invasion. We previously identified RUNX3 as a major gastric tumor suppressor by establishing a causal relationship between loss of function and gastric carcinogenesis. More recently, we showed that RUNX3 functions as a bona fide initiator of colonic carcinogenesis by linking the Wnt oncogenic and TGF-beta tumor suppressive pathways. Apart from gastric and colorectal cancers. a multitude of epithelial cancers exhibit inactivation of RUNX3, thereby making it a putative tumor suppressor in human neoplasia. This review highlights our current understanding of the molecular mechanisms of RUNX3 inactivation in the context of cancer development and progression. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basal cell carcinomas (BCC), which are the most common form of skin malignancy, are invariably associated with the deregulation of the Sonic Hedgehog (Shh) signalling pathway. As such, BCC represent a unique model for the study of interactions of the Shh pathway with other genes and pathways. We constructed a tissue microarray (TMA) of 75 paired BCC and normal skin and analysed the expression of beta-catenin and RUNX3, nuclear effectors of the wingless-Int (Wnt) and bone morphogenetic protein/transforming growth factor-beta pathways, respectively. In line with previous reports, we observed varying subcellular expression pattern of beta-catenin in BCC, with 31 cases (41%) showing nuclear accumulation. In contrast, all the BCC cases tested by the TMA showed RUNX3 protein uniformly overexpressed in the nuclei of the cancer cells. Analysis by Western blotting and DNA sequencing indicates that the overexpressed protein is normal and full-length, containing no mutation in the coding region, implicating RUNX3 as an oncogene in certain human cancers. Our results indicate that although the deregulation of Wnt signalling could contribute to the pathogenesis of a subset of BCC, RUNX3 appears to be a universal downstream mediator of a constitutively active Shh pathway in BCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylases ( HDACs) 1 and 2 share a high degree of homology and coexist within the same protein complexes. Despite their close association, each possesses unique functions. We show that the upregulation of HDAC2 in colorectal cancer occurred early at the polyp stage, was more robust and occurred more frequently than HDAC1. Similarly, while the expression of HDACs1 and 2 were increased in cervical dysplasia and invasive carcinoma, HDAC2 expression showed a clear demarcation of high-intensity staining at the transition region of dysplasia compared to HDAC1. Upon HDAC2 knockdown, cells displayed an increased number of cellular extensions reminiscent of cell differentiation. There was also an increase in apoptosis, associated with increased p21(Cip1/WAF1) expression that was independent of p53. These results suggest that HDACs, especially HDAC2, are important enzymes involved in the early events of carcinogenesis, making them candidate markers for tumor progression and targets for cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.

METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.

RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.

CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has demonstrated that microRNAs (miRNAs) are key regulators of many cell processes often deregulated in cancer, including apoptosis. Indeed, it is becoming clear that many miRNAs are anti-apoptotic and mediate this effect by targeting pro-apoptotic mRNAs or positive regulators of pro-apoptotic mRNAs. Conversely, many pro-apoptotic miRNAs target anti-apoptotic mRNAs or their positive regulators. We have reviewed the current knowledge in this area including evidence of miRNA involvement in cancer drug resistance. (C) 2010 Elsevier Ltd. All rights reserved.