983 resultados para Air chemistry observatory
Resumo:
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently. To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.
Long-term exposure to gaseous air pollutants and cardio-respiratory mortality in Brisbane, Australia
Resumo:
Air pollution is ranked by the World Health Organisation as one of the top ten contributors to the global burden of disease and injury. Exposure to gaseous air pollutants, even at a low level, has been associated with cardiorespiratory diseases (Vedal, Brauer et al. 2003). Most recent epidemiological studies of air pollution have used time-series analyses to explore the relationship between daily mortality or morbidity and daily ambient air pollution concentrations based on the same day or previous days (Hajat, Armstrong et al. 2007). However, most of the previous studies have examined the association between air pollution and health outcomes using air pollution data from a single monitoring site or average values from a few monitoring sites to represent the whole population of the study area. In fact, for a metropolitan city, ambient air pollution levels may differ significantly among the different areas. There is increasing concern that the relationships between air pollution and mortality may vary with geographical area (Chen, Mengersen et al. 2007). Additionally, some studies have indicated that socio-economic status can act as a confounder when investigating the relation between geographical location and health (Scoggins, Kjellstrom et al. 2004). This study examined the spatial variation in the relationship between long-term exposure to gaseous air pollutants (including nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2)), and cardiorespiratory mortality in Brisbane, Australia, during the period 1996 - 2004.
Resumo:
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
Resumo:
As climate change will entail new conditions for the built environment, the thermal behaviour of air-conditioned office buildings may also change. Using building computer simulations, the impact of warmer weather is evaluated on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads and probable indoor temperature increases due to a possibly undersized air-conditioning system, as well as the possible change in energy use. It is found that existing office buildings would generally be able to adapt to the increasing warmth of year 2030 Low and High scenarios projections and the year 2070 Low scenario projection. However, for the 2070 High scenario, the study indicates that the existing office buildings in all capital cities of Australia would suffer from overheating problems. For existing buildings designed for current climate conditions, it is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of building cooling load. For the new buildings designed for warmer scenarios, a 28-59% increase of cooling capacity under the 2070 High scenario would be required.
Resumo:
Many current chemistry programs privilege de-contextualised conceptual learning, often limited by a narrow selection of pedagogies that too often ignore the realities of studentse own lives and interests (e.g., Tytler, 2007). One new approach that offers hope for improving studentse engagement in learning chemistry and perceived relevance of chemistry is the context-based approach. This study investigated how teaching and learning occurred in one year 11 context-based chemistry classroom. Through an interpretive methodology using a case study design, the teaching and learning that occurred during one term (ten weeks) of a unit on Water Quality are described. The researcher was a participant observer in the study who co-designed the unit of work with the teacher. The research questions explored the structure and implementation of the context-based approach, the circumstances by which students connected concepts and context in the context-based classroom and the outcome of the approach for the students and the teacher. A dialectical sociocultural theoretical framework using the dialectics of structure | agency and agency | passivity was used as a lens to explore the interactions between learners in different fields, such as the field of the classroom and the field of the local community. The findings of this study highlight the difficulties teachers face when implementing a new pedagogical approach. Time constraints and opportunities for students to demonstrate a level of conceptual understanding that satisfied the teacher, hindered a full implementation of the approach. The study found that for high (above average) and sound (average) achieving students, connections between sanctioned science content of school curriculum and the studentse out-of-school worlds were realised when students actively engaged in fields that contextualised inquiry and gave them purpose for learning. Fluid transitions or the toing and froing between concepts and contexts occurred when structures in the classroom afforded students the agency to connect concepts and contexts. The implications for teaching by a context-based approach suggest that keeping the context central, by teaching content on a "need-to-know" basis, contextualises the chemistry for students. Also, if teachers provide opportunities for student-student interactions and written work student learning can improve.
Resumo:
Air transportation of Australian casualties in World War II was initially carried out in air ambulances with an accompanying male medical orderly. By late 1943 with the war effort concentrated in the Pacific, Allied military authorities realised that air transport was needed to move the increasing numbers of casualties over longer distances. The Royal Australian Air Force (RAAF) became responsible for air evacuation of Australian casualties and established a formal medical air evacuation system with trained flight teams early in 1944. Specialised Medical Air Evacuation Transport Units (MAETUs) were established whose sole responsibility was undertaking air evacuations of Australian casualties from the forward operational areas back to definitive medical care. Flight teams consisting of a RAAF nursing sister (registered nurse) and a medical orderly carried out the escort duties. These personnel had been specially trained in Australia for their role. Post-WWII, the RAAF Nursing Service was demobilised with a limited number of nurses being retained for the Interim Air Force. Subsequently, those nurses were offered commissions in the Permanent Air Force. Some of the nurses who remained were air evacuation trained and carried out air evacuations both in Australia and as part of the British Commonwealth Occupation Force in Japan. With the outbreak of the Korean War in June 1950, Australia became responsible for the air evacuation of British Commonwealth casualties from Korea to Japan. With a re-organisation of the Australian forces as part of the British Commonwealth forces, RAAF nurses were posted to undertake air evacuation from Korea and back to Australia from Iwakuni, Japan. By 1952, a specialised casualty staging section was established in Seoul and staffed by RAAF nurses from Iwakuni on a rotation basis. The development of the Australian air evacuation system and the role of the flight nurses are not well documented for the period 1943-1953. The aims of this research are three fold and include documenting the origins and development of the air evacuation system from 1943-1953; analysing and documenting the RAAF nurse’s role and exploring whether any influences or lessons remain valid today. A traditional historical methodology of narrative and then analysis was used to inform the flight nurse’s role within the totality of the social system. Evidence was based on primary data sources mainly held in Defence files, the Australian War Memorial or the National Archives of Australia. Interviews with 12 ex-RAAF nurses from both WWII and the Korean War were conducted to provide information where there were gaps in the primary data and to enable exploration of the flight nurses’ role and their contributions in war of the air evacuation of casualties. Finally, this thesis highlights two lessons that remain valid today. The first is that interoperability of air evacuation systems with other nations is a force multiplier when resources are scarce or limited. Second, the pre-flight assessment of patients was essential and ensured that there were no deaths in-flight.
Resumo:
A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE.