986 resultados para ARGININE-RICH PEPTIDES
Resumo:
Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcification pathologies in the same tissues. Although the biological importance of GRP remains to be elucidated, it was suggested a physiological role in cartilage development and calcification process during vertebrate skeleton formation. Using zebrafish, an accepted model to study skeletal development, we have described two grp paralog genes, grp1 and grp2, which exhibited distinct patterns of expression, suggesting different regulatory pathways for each gene. Gene synteny analysis showed that grp2 gene is more closely related to tetrapod grp, although grp1 gene was proposed to be the vertebrate ortholog by sequence comparison. In addition, we identified a functional promoter of grp2 gene and using a functional approach we confirmed the involvement of transcription factors from Sox family (Sox9b and Sox10) in the regulation of grp2 expression. In an effort to provide more information about the function of grp isoforms, we generated two zebrafish transgenic lines capable to overexpress conditionally grp genes and possible roles in the skeleton development were studied. To better understand GRP function a mammalian system was used and the analysis of knockout mice showed that GRP is involved in chondrocyte maturation and the absence of GRP is associated to proteoglycans loss in calcified articular cartilage. In addition, we detected differences in chondrogenesis markers in articular chondrocyte primary culture. Overall, our data suggest a main role for GRP on chondrocyte differentiation.
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Biomedicina, Universidade do Algarve, 2013
Resumo:
Tese de doutoramento, Ciências Biomédicas (Bioquímica Médica), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Tese de doutoramento, Ciências Biomédicas (Bioquímica Médica), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.
Resumo:
This article examines John Sommerfield’s 1936 novel, May Day, a work that experiments with multiple perspectives, voices and modes. The article examines the formal experiments of the novel in order to bring into focus contemporary debates around the aesthetics of socialist realism, the politics of Popular Front anti-fascism and the relationship between writers on the left and the legacies of literary modernism. The article suggests that while leftist writers’ appropriations of modernist techniques have been noted by critics, there has been a tendency to assume that such approaches were in contravention of the aesthetics of socialist realism. Socialist realism is shown to be more a fluid and disputed concept than such readings suppose, and Sommerfield’s adaptations of modernist textual strategies are interpreted as key components of a political aesthetic directed towards the problems of alienation and social fragmentation.
Resumo:
ntroduction: Osteoarthritis (OA) is a degenerative joint disease affecting more than 8.5 million people in the UK. Disruption in the catabolic and anabolic balance, with the catabolic cytokine Interleukin 1 beta (IL-1β) being involved in the initiation and progression of OA (1). Melanocortin peptides (α-MSH and D[Trp8]-γ-MSH) exert their anti-inflammatory effects via activation of melanocortin receptors (MC), with both MC1 and MC3 being identified as promising candidates as novel targets for OA (2). This study aims to assess the chondroprotective and anti-inflammatory effects of the pan melanocortin receptor agonist α-MSH and MC3 agonist D[Trp8]-γ-MSH following IL-1β chondrocyte stimulation. Methods: RT-PCR/ Western Blot: Human C-20/A4 chondrocytic cell-line were cultured in 6 well plates (1x106 cells/well) and harvested to determine MC and IL-1β expression by RT-PCR, and Western Blot. Cell-Culture: Cells were cultured in 96 well plates (1x106 cells/well) and stimulated with H2O2 (0.3%), TNF-α (60 pg/ml) or IL-1β (0-5000pg/ml) for 0-72h and cell viability determined. Drug Treatment: In separate experiments cells were pre-treated with 3 μg/ml α-MSH (Sigma-Aldrich Inc. Poole, UK), or D[Trp8]-γ-MSH (Phoenix Pharmaceuticals, Karlsrhue, Germany) (all dissolved in PBS) for 30 minutes prior to IL-1β (5000pg/ml) stimulation for 6-24h. Analysis: Cell viability was determined by using the three cell viability assays; Alamar Blue, MTT and the Neutral Red (NR) assay. Cell-free supernatants were collected and analysed for Interleukin -6 (IL-6) and IL-8 release by ELISA. Data expressed as Mean ± SD of n=4-8 determination in quadruplicate. *p≤ 0.05 vs. control. Results: Both RT-PCR, and Western Blot showed MC1 and MC3 expression on C-20/A4 cells. Cell viability analysis: IL-1β stimulation led to a maximal cell death of 35% at 6h (Alamar Blue), and 40% and 75% with MTT and Neutral Red respectively at 24h compared to control. The three cell viability assays have different cellular uptake pathways, which accounts for the variations observed in cell viability in response to the concentration of IL-1β, and time. Cytokine analysis by ELISA: IL-1β (5000pg/ml) stimulation for 6 and 24h showed maximal IL-6 production 292.3 ±3.8 and 275.5 ±5.0 respectively, and IL-8 production 353.3 ±2.6 and 598.3 ±8.6 respectively. Pre-treatment of cells with α-MSH and D[Trp8]-γ-MSH caused significant reductions in both IL-6 and IL-8 respectively following IL-1β stimulation at 6h. Conclusion: MC1/3 are expressed on C-20/A4 cells, activation by melanocortin peptides led to an inhibition of IL-1β induced cell death and pro-inflammatory cytokine release.
Resumo:
Currently, a learning management system (LMS) plays a central role in any e-learning environment. These environments include systems to handle the pedagogic aspects of the teaching–learning process (e.g. specialized tutors, simulation games) and the academic aspects (e.g. academic management systems). Thus, the potential for interoperability is an important, although over looked, aspect of an LMS. In this paper, we make a comparative study of the interoperability level of the most relevant LMS. We start by defining an application and a specification model. For the application model, we create a basic application that acts as a tool provider for LMS integration. The specification model acts as the API that the LMS should implement to communicate with the tool provider. Based on researches, we select the Learning Tools Interoperability (LTI) from IMS. Finally, we compare the LMS interoperability level defined as the effort made to integrate the application on the study LMS.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Engineering and Technological Sciences
Resumo:
We have suggested previously that both the negatively and positively charged residues of the highly conserved Glu/Asp-Arg-Tyr (E/DRY) motif play an important role in the activation process of the alpha(1b)-adreneric receptor (AR). In this study, R143 of the E/DRY sequence in the alpha(1b)-AR was mutated into several amino acids (Lys, His, Glu, Asp, Ala, Asn, and Ile). The charge-conserving mutation of R143 into lysine not only preserved the maximal agonist-induced response of the alpha(1b)-AR, but it also conferred high degree of constitutive activity to the receptor. Both basal and agonist-induced phosphorylation levels were significantly increased for the R143K mutant compared with those of the wild-type receptor. Other substitutions of R143 resulted in receptor mutants with either a small increase in constitutive activity (R143H and R143D), impairment (R143H, R143D), or complete loss of receptor-mediated response (R143E, R143A, R143N, R143I). The R413E mutant displayed a small, but significant increase in basal phosphorylation despite being severely impaired in receptor-mediated response. Interestingly, all the arginine mutants displayed increased affinity for agonist binding compared with the wild-type alpha(1b)-AR. A correlation was found between the extent of the affinity shift and the intrinsic activity of the agonists. The analysis of the receptor mutants using the allosteric ternary complex model in conjunction with the results of molecular dynamics simulations on the receptor models support the hypothesis that mutations of R143 can drive the isomerization of the alpha(1b)-AR into different states, highlighting the crucial role of this residue in the activation process of the receptor.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state.