945 resultados para spool-and-line device


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc oxide nanorods (ZnO NRs) have been synthesized on flexible substrates by adopting a new and novel three-step process. The as-grown ZnO NRs are vertically aligned and have excellent chemical stoichiometry between its constituents. The transmission electron microscopic studies show that these NR structures are single crystalline and grown along the < 001 > direction. The optical studies show that these nanostructures have a direct optical band gap of about 3.34 eV. Therefore, the proposed methodology for the synthesis of vertically aligned NRs on flexible sheets launches a new route in the development of low-cost flexible devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the InxGa1 (-) As-x channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the InxGa1 (-) As-x layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the InxGa1 (-) As-x channel layer was pseudomorphically grown leading to tetragonal strain along the 001] growth direction and that the average indium content (x) in the epilayer is similar to 0.12. We found consistency in the results obtained using various methods of analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inverter dead-time, which is meant to prevent shoot-through fault, causes harmonic distortion and change in the fundamental voltage in the inverter output. Typical dead-time compensation schemes ensure that the amplitude of the fundamental output current is as desired, and also improve the current waveform quality significantly. However, even with compensation, the motor line current waveform is observed to be distorted close to the current zero-crossings. The IGBT switching transition times being significantly longer at low currents than at high currents is an important reason for this zero-crossover distortion. Hence, this paper proposes an improved dead-time compensation scheme, which makes use of the measured IGBT switching transition times at low currents. Measured line current waveforms in a 2.2 kW induction motor drive with the proposed compensation scheme are compared against those with the conventional dead-time compensation scheme and without dead-time compensation. The experimental results on the motor drive clearly demonstrate the improvement in the line current waveform quality with the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unmet clinical needs remain the primary driving force for innovations in medical devices. While appropriate mechanisms to protect these innovative outcomes are essential, the performance of clinical trials to ensure safety is also mandated before the invention is ready for public use. Literature explaining the relationship between patenting activities and clinical trials of medical devices is scarce. Linking patent ownership to clinical trials may imply product leadership and value chain control. In this paper, we use patent data from Indian Patent Office (IPO), PCT, and data from Clinical Trials Registry of India (CTRI) to identify whether patent assignees have any role in leading as primary sponsors of clinical trials. A total of 42 primary sponsors are identified from the CTRI database in India. Number of patents awarded to these primary sponsors in the particular medical device, total number of patents awarded to the primary sponsor in all technologies, total number of patents in the specific medical device technology provides an indication of leadership and control in the value chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, for the first time, the key design parameters of a shallow trench isolation-based drain-extended MOS transistor are discussed for RF power applications in advanced CMOS technologies. The tradeoff between various dc and RF figures of merit (FoMs) is carefully studied using well-calibrated TCAD simulations. This detailed physical insight is used to optimize the dc and RF behavior, and our work also provides a design window for the improvement of dc as well as RF FoMs, without affecting the breakdown voltage. An improvement of 50% in R-ON and 45% in RF gain is achieved at 1 GHz. Large-signal time-domain analysis is done to explore the output power capability of the device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we report drain-extended MOS device design guidelines for the RF power amplifier (RF PA) applications. A complete RF PA circuit in a 28-nm CMOS technology node with the matching and biasing network is used as a test vehicle to validate the RF performance improvement by a systematic device design. A complete RF PA with 0.16-W/mm power density is reported experimentally. By simultaneous improvement of device-circuit performance, 45% improvement in the circuit RF power gain, 25% improvement in the power-added efficiency at 1-GHz frequency, and 5x improvement in the electrostatic discharge robustness are reported experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shallow-trench isolation drain extended pMOS (STI-DePMOS) devices show a distinct two-stage breakdown. The impact of p-well and deep-n-well doping profile on breakdown characteristics is investigated based on TCAD simulations. Design guidelines for p-well and deep-n-well doping profile are developed to shift the onset of the first-stage breakdown to a higher drain voltage and to avoid vertical punch-through leading to early breakdown. An optimal ratio between the OFF-state breakdown voltage and the ON-state resistance could be obtained. Furthermore, the impact of p-well/deep-n-well doping profile on the figure of merits of analog and digital performance is studied. This paper aids in the design of STI drain extended MOSFET devices for widest safe operating area and optimal mixed-signal performance in advanced system-on-chip input-output process technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.