948 resultados para soft computing methods
Resumo:
Right now you are probably sitting on a comfy cushion. This is most likely filled with polyurethane (PU) foam. PUs are very long molecules made up of many repeating units. If the repeating units are prepolymers – intermediate-mass building blocks – with more than two reactive end groups, a three-dimensional network will form – a rubber, or elastomer, which can behave elastically depending on the degree of network cross-linking.
Resumo:
Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.
Resumo:
The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção de grau de Mestre em Engenharia Mecânica
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
In Brazil, more than 500,000 new cases of malaria were notified in 1992. Plasmodium falciparum and P.vivax are the responsible species for 99.3% of the cases. For adequate treatment, precoce diagnosis is necessary. In this work, we present the results of the traditional Plasmodia detection method, thick blood film (TBF), and the results of alternative methods: Immunofluorescence assay (IFA) with polyclonal antibody and Quantitative Buffy Coat method (QBC)® in a well defined population groups. The analysis were done in relation to the presence or absence of malaria clinical symptoms. Also different classes of immunoglobulins anti-P.falciparum were quantified for the global analysis of the results, mainly in the discrepant results. We concluded that alternative methods are more sensitive than TBF and that the association of epidemiological, clinical and laboratory findings is necessary to define the presence of malaria.
Resumo:
Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.
Resumo:
This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.A presente dissertação foi preparada no âmbito do convénio bilateral existente entre a Universidade Nova de Lisboa e a Universidade de Vigo.
Resumo:
Lunacloud is a cloud service provider with offices in Portugal, Spain, France and UK that focus on delivering reliable, elastic and low cost cloud Infrastructure as a Service (IaaS) solutions. The company currently relies on a proprietary IaaS platform - the Parallels Automation for Cloud Infrastructure (PACI) - and wishes to expand and integrate other IaaS solutions seamlessly, namely open source solutions. This is the challenge addressed in this thesis. This proposal, which was fostered by Eurocloud Portugal Association, contributes to the promotion of interoperability and standardisation in Cloud Computing. The goal is to investigate, propose and develop an interoperable open source solution with standard interfaces for the integrated management of IaaS Cloud Computing resources based on new as well as existing abstraction libraries or frameworks. The solution should provide bothWeb and application programming interfaces. The research conducted consisted of two surveys covering existing open source IaaS platforms and PACI (features and API) and open source IaaS abstraction solutions. The first study was focussed on the characteristics of most popular open source IaaS platforms, namely OpenNebula, OpenStack, CloudStack and Eucalyptus, as well as PACI and included a thorough inventory of the provided Application Programming Interfaces (API), i.e., offered operations, followed by a comparison of these platforms in order to establish their similarities and dissimilarities. The second study on existing open source interoperability solutions included the analysis of existing abstraction libraries and frameworks and their comparison. The approach proposed and adopted, which was supported on the conclusions of the carried surveys, reuses an existing open source abstraction solution – the Apache Deltacloud framework. Deltacloud relies on the development of software driver modules to interface with different IaaS platforms, officially provides and supports drivers to sixteen IaaS platform, including OpenNebula and OpenStack, and allows the development of new provider drivers. The latter functionality was used to develop a new Deltacloud driver for PACI. Furthermore, Deltacloud provides a Web dashboard and REpresentational State Transfer (REST) API interfaces. To evaluate the adopted solution, a test bed integrating OpenNebula, Open- Stack and PACI nodes was assembled and deployed. The tests conducted involved time elapsed and data payload measurements via the Deltacloud framework as well as via the pre-existing IaaS platform API. The Deltacloud framework behaved as expected, i.e., introduced additional delays, but no substantial overheads. Both the Web and the REST interfaces were tested and showed identical measurements. The developed interoperable solution for the seamless integration and provision of IaaS resources from PACI, OpenNebula and OpenStack IaaS platforms fulfils the specified requirements, i.e., provides Lunacloud with the ability to expand the range of adopted IaaS platforms and offers a Web dashboard and REST API for the integrated management. The contributions of this work include the surveys and comparisons made, the selection of the abstraction framework and, last, but not the least, the PACI driver developed.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.