921 resultados para quantum dot lasers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the monolithic integration of a sampled-grating distributed Bragg reflector (SC-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55 mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current I-th = 62 mA, and output power reaches 3.6 mW. The wavelength tuning range covers 30 nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we obtain SiGe quantum dots with the diameters and density of 15-20 nm and 1.8 x 10(11) cm(-2), respectively, by 193 nm excimer laser annealing of Si0.77Ge0.23 strained films. Under the excimer laser annealing, only surface atoms diffusion happens. From the detailed statistical information about the size and shape of the quantum dots with different annealing time, it is shown that the as-grown self-assembled quantum dots, especially the {105}-faceted dots, are not stable and disappear before the appearance of the laser-induced quantum dots. Based on the calculation of surface energy and surface chemical potential, we show that the {103}-faceted as-grown self-assembled quantum dots are more heavily strained than the {105}-faceted ones, and the heavy strain in the dot can decrease the surface energy of the dot facets. The formation of the laser-induced quantum dots, which is also with heavy strain, is attributed to kinetic constraint. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of rutile TiO2 quantum dots (QDs) are investigated via the first-principles band structure method. We first propose a model to passivate the rutile TiO2 surfaces for the local density approximation calculations. In this model pseudohydrogen atoms are used to passivate the surface dangling bonds, which remove the localized in-cap surface states in the TiO2 QDs. As the size of the QD decreases, the band gap evolves as E-g(dot) = E-g(bulk) + 73.70/d(1.93), where E-g(dot) and d are the band gap and diameter of the QD, and E-g(bulk) is the band gap of the bulk rutile TiO2. The valence band maximum and the conduction band minimum states of the QDs are distributed mostly in the interior of the QDs, and they well inherit the atomic characteristics of those states of the bulk rutile TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained a low density of coupled InAs/GaAs quantum dots (QDs) with an emission wavelength of around 1.3 mu m at room temperature. Atomic force microscopy and transmission electronic microscopy reveal that the dot size difference and the lateral displacement between the two dots are related to the spacer thickness. Spectroscopy of the coupled QD ensembles is considerably influenced by the spacer thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new device of two parallel distributed feedback ( DFB) laser integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB lasers in parallel, which had a small difference in frequency. Continuous rapidly tunable optical microwave signals from 13 GHz to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.55 mu m InGaAsP/InGaAsP multiple-quantum-well electro-absorption modulator (EAM) monolithically integrated with a distributed feedback laser (DFB) diode has been realized based on a novel butt-joint scheme by ultra-low metal-organic vapour phase epitaxy for the first time. The threshold current of 25 mA and an extinction ratio of more than 30 dB are obtained by using the novel structure. The beam divergence angles at the horizontal and vertical directions are as small as 19.3 degrees x 13 degrees, respectively, without a spot-size converter by undercutting the InGaAsP active region. The capacitance of the ridge waveguide device with a deep mesa buried by polyimide was reduced down to 0.30 pF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3143025]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of annealing on the optical properties of InAs/GaAs quantum dots (QDs) grown under different conditions by metalorganic chemical vapor deposition (MOCVD) are studied. A lower QD growth rate leads to an earlier and faster decrease of QD photoluminescence (PL) intensity with increasing annealing temperature. which is proposed to be related to the increased QD two-dimensional (2D)-three-dimensional (3D) transition critical layer thickness at low QD growth rate. High-quality GaAs cap layers grown at high temperature and a low deposition rate are shown to decrease the blueshift of the QDs' emission wavelength significantly during in-situ I h annealing experiments, which is important for the fabrication of long-wavelength InAs/GaAs QD lasers by MOCVD technique. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0.14 W.A(-1) and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.