940 resultados para one-dimensional theory
Resumo:
We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature.
Resumo:
Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.
Resumo:
We have studied the fluctuation effects in proton-proton collisions through the analysis of their observables. To investigate the role of fluctuation 5 in the initial conditions, we have used the interacting gluon model, modified by the inclusion of the impact parameter, and have applied the one-dimensional Landau's Hydrodynamical Model to the fireballs thus generated. The rapidity and pseudorapidity distributions were calculated using two distinct procedures, one taking the fluctuations into account and the other the usual method considering only one fireball with the average initial conditions. The results show indeed the importance of fluctuations.
Resumo:
This paper presents the results of a numerical and experimental study of phase change material (PCM) filled walls and roofs under real operational conditions to achieve passive thermal comfort. The numerical part of the study was based on a one-dimensional model for the phase change problem controlled by pure conduction. Real radiation data was used to determine the external face temperature. The numerical treatment was based upon using finite difference approximations and the ADI scheme. The results obtained were compared with field measurements. The experimental set-up consisted of a small room with movable roof and side wall. The roof was constructed in the traditional way but with the phase change material enclosed. Thermocouples were distributed across the cross section of the roof. Another roof, identical but without the PCM, was also used during comparative tests. The movable wall was also constructed as is done traditionally but with the PCM enclosed. Again, thermocouples were distributed across the wall thickness to enable measurement of the local temperatures. Another wall, identical but without the PCM, was also used during comparative tests. The PCM used in the numerical and experimental tests was composed of a mixture of two commercial grades of glycol in order to obtain the required fusion temperature range. Comparison between the simulation results and the experiments indicated good agreement. Field tests also indicated that the PCM used was adequate and that the concept was effective in maintaining the indoor temperature very close to the established comfort limits. Further economical analysis indicated that the concept could effectively help in reducing the electric energy consumption and improving the energy demand pattern. © 1997 by John Wiley & Sons, Ltd.
Resumo:
We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
Resumo:
A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.
Resumo:
We consider fermions in one-dimensional superlattices (SL's), modeled by site-dependent Hubbard-U couplings arranged in a repeated pattern of repulsive (i.e., U>0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems is used to calculate the local moment and the magnetic structure factor in the ground state. We have found four regimes for magnetic behavior: uniform local moments forming a spin-density wave (SDW), floppy local moments with short-ranged correlations, local moments on repulsive sites forming long-period SDW's superimposed with short-ranged correlations, and local moments on repulsive sites solely with long-period SDW's; the boundaries between these regimes depend on the range of electronic densities ρ and on the SL aspect ratio. Above a critical electronic density, ρ↑↓, the SDW period oscillates both with ρ and with the spacer thickness. The former oscillation allows one to reproduce all SDW wave vectors within a small range of electronic densities, unlike the homogeneous system. The latter oscillation is related to the exchange oscillation observed in magnetic multilayers. A crossover between regimes of thin to thick layers has also been observed.
Resumo:
The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.
Resumo:
The WWγ triple gauge boson coupling parameters are studied using pp̄rarr; νγ+X(=e,μ) events at s=1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162pb-1 delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for pp̄→W(γ)+X→ νγ+X with ETγ>8 GeV and ΔR γ> 0.7 is 14.8±1.6(stat)±1.0(syst) ±1.0(lum)pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88<Δκγ<0.96 and -0. 20<λγ<0.20. © 2005 The American Physical Society.
Resumo:
We describe and begin to evaluate a parameterization to include the vertical transport of hot gases and particles emitted from biomass burning in low resolution atmospheric-chemistry transport models. This sub-grid transport mechanism is simulated by embedding a 1-D cloud-resolving model with appropriate lower boundary conditions in each column of the 3-D host model. Through assimilation of remote sensing fire products, we recognize which columns have fires. Using a land use dataset appropriate fire properties are selected. The host model provides the environmental conditions, allowing the plume rise to be simulated explicitly. The derived height of the plume is then used in the source emission field of the host model to determine the effective injection height, releasing the material emitted during the flaming phase at this height. Model results are compared with CO aircraft profiles from an Amazon basin field campaign and with satellite data, showing the huge impact that this mechanism has on model performance. We also show the relative role of each main vertical transport mechanisms, shallow and deep moist convection and the pyro-convection (dry or moist) induced by vegetation fires, on the distribution of biomass burning CO emissions in the troposphere.
Resumo:
We have studied a dissipative version of a one-dimensional Fermi accelerator model. The dynamics of the model is described in terms of a two-dimensional, nonlinear area-contracting map. The dissipation is introduced via inelastic collisions of the particle with the walls and we consider the dynamics in the regime of high dissipation. For such a regime, the model exhibits a route to chaos known as period doubling and we obtain a constant along the bifurcations so called the Feigenbaum's number 8.
Resumo:
We present results from a study of pp̄→Wγ+X events utilizing data corresponding to 0.7fb-1 of integrated luminosity at s=1.96TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WWγ couplings at the 95% C.L. The one-dimensional 95% C.L. limits are 0.49<κγ<1.51 and -0.12<λγ<0.13. We make the first study of the charge-signed rapidity difference between the lepton and the photon and find it to be indicative of the standard model radiation-amplitude zero in the Wγ system. © 2008 The American Physical Society.
Resumo:
The compound dysprosium(III) 2-metoxybenzoate, {[Dy(2-MeO-Bz)2μ-(2-MeO-Bz)(H2O)2]2·4H2O}n (2-MeO-Bz = 2- methoxybenzoate), was synthesized from a reaction mixture containing DyCl3 and Na(2-MeO-Bz), and characterized by single-crystal X-ray diffraction. The molecular structure showed dinuclear units in which each Dy(III) ion is coordinated by nine oxygen atoms. The carboxylato groups are bound to the dysprosium centers in two modes: bidentate chelating and tridentate chelating-bridging. Besides this, the occurrence of hydrogen bonds involving a coordinated water molecule and carboxylato groups leads to the formation of helicoidal chains along the crystal lattice, resulting in a supramolecular one-dimensional polymer. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
During the critical period of the maternal recognition, which occurs between days 15 and 19 of pregnancy, the conceptus must competently synthesize molecules capable of blocking the synthesis of prostaglandin F2α (PGF2α) and luteolysis. In cattle, the major macromolecule involved in suck blockage is the protein interferontau (IFN-τ). During the critical period, failures in the recognition of pregnancy determine embryonic mortality on up to 40% of inseminated cows. Data about IFN-τ in Bos taurus indicus are still scarce. Objective of this study was to quantitatively evaluate the presence of IFN-τ during the critical period for maternal recognition of pregnancy in uterine flushings obtained in vivo by Foley catheter (Days 14, 16 and 18 post estrus) or post-mortem (Day 18 post estrus). Multiparous, cyclic or pregnant zebu cows (Bos taurus indicus) on days 14, 16 and 18 post estrus were used for in vivo or post mortem uterine flushing collection. In both cases, a Ringer solution was used to wash the uterus of cows. Uterine flushings were concentrated by ultrafiltration and lyophilized. Proteins were separated by one-dimensional electrophoresis (SDS-PAGE) in a 15% polyacrilamide gel. Interferontau quantification in uterine flushings was performed by western blotting and densitometry. Non-specific protein bands were observed in both in vivo and post mortem uterine flushings. Interferon-tau was detected only in uterine flushings obtained from pregnant cows post-mortem (P<0.05). Optical density of protein bands was not affected by the day of the critical period, state (cyclic or pregnant) or interaction day x state. There was no effect of the conceptus weight or progesterone concentration on the day of uterine flushing collection in the optical density of the IFN-τ protein band. It was concluded that the detection and quantification of IFN-τ in the uterine environment of zebu cows, in these experimental?conditions, is only possible in uterine flushings obtained post-mortem.