875 resultados para cardiac signals, EEG signals, analysis, higher order spectra
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
We establish a unified model to explain Quasi-Periodic-Oscillation (QPO) observed from black hole and neutron star systems globally. This is based on the accreting systems thought to be damped harmonic oscillators with higher order nonlinearity. The model explains multiple properties parallelly independent of the nature of the compact object. It describes QPOs successfully for several compact sources. Based on it, we predict the spin frequency of the neutron star Sco X-1 and the specific angular momentum of black holes GRO J1655-40, GRS 1915+105.
Resumo:
This is a study of ultra-cold Fermi gases in different systems. This thesis is focused on exotic superfluid states, for an example on the three component Fermi gas and the FFLO phase in optical lattices. In the two-components case, superfluidity is studied mainly in the case of the spin population imbalanced Fermi gases and the phase diagrams are calculated from the mean-field theory. Different methods to detect different phases in optical lattices are suggested. In the three-component case, we studied also the uniform gas and harmonically trapped system. In this case, the BCS theory is generalized to three-component gases. It is also discussed how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical lattices. The thesis is divided in chapters as follows: Chapter 1 is an introduction to the field of cold quantum gases. In chapter 2 optical lattices and their experimental characteristics are discussed. Chapter 3 deals with two-components Fermi gases in optical lattices and the paired states in lattices. In chapter 4 three-component Fermi gases with and without a harmonic trap are explored, and the pairing mechanisms are studied. In this chapter, we also discuss three-component Fermi gases in optical lattices. Chapter 5 devoted to the higher order correlations, and what they can tell about the paired states. Chapter 6 concludes the thesis.
Resumo:
This thesis consists of four research papers and an introduction providing some background. The structure in the universe is generally considered to originate from quantum fluctuations in the very early universe. The standard lore of cosmology states that the primordial perturbations are almost scale-invariant, adiabatic, and Gaussian. A snapshot of the structure from the time when the universe became transparent can be seen in the cosmic microwave background (CMB). For a long time mainly the power spectrum of the CMB temperature fluctuations has been used to obtain observational constraints, especially on deviations from scale-invariance and pure adiabacity. Non-Gaussian perturbations provide a novel and very promising way to test theoretical predictions. They probe beyond the power spectrum, or two point correlator, since non-Gaussianity involves higher order statistics. The thesis concentrates on the non-Gaussian perturbations arising in several situations involving two scalar fields, namely, hybrid inflation and various forms of preheating. First we go through some basic concepts -- such as the cosmological inflation, reheating and preheating, and the role of scalar fields during inflation -- which are necessary for the understanding of the research papers. We also review the standard linear cosmological perturbation theory. The second order perturbation theory formalism for two scalar fields is developed. We explain what is meant by non-Gaussian perturbations, and discuss some difficulties in parametrisation and observation. In particular, we concentrate on the nonlinearity parameter. The prospects of observing non-Gaussianity are briefly discussed. We apply the formalism and calculate the evolution of the second order curvature perturbation during hybrid inflation. We estimate the amount of non-Gaussianity in the model and find that there is a possibility for an observational effect. The non-Gaussianity arising in preheating is also studied. We find that the level produced by the simplest model of instant preheating is insignificant, whereas standard preheating with parametric resonance as well as tachyonic preheating are prone to easily saturate and even exceed the observational limits. We also mention other approaches to the study of primordial non-Gaussianities, which differ from the perturbation theory method chosen in the thesis work.
Resumo:
This article reports on a 6-year study that examined the association between pre-admission variables and field placement performance in an Australian bachelor of social work program (N=463). Very few of the pre-admission variables were found to be significantly associated with performance. These findings and the role of the admissions process are discussed. In addition to the usual academic criteria, the authors urge schools to include a focus on nonacademic criteria during the admissions process and the ongoing educational program.
Resumo:
A general asymptotic method based on the work of Krylov-Bogoliubov is developed to obtain the response of nonlinear over damped systems. A second-order system with both roots real is treated first and the method is then extended to higher-order systems. Two illustrative examples show good agreement with results obtained by numerical integration.
Resumo:
In this thesis I examine one commonly used class of methods for the analytic approximation of cellular automata, the so-called local cluster approximations. This class subsumes the well known mean-field and pair approximations, as well as higher order generalizations of these. While a straightforward method known as Bayesian extension exists for constructing cluster approximations of arbitrary order on one-dimensional lattices (and certain other cases), for higher-dimensional systems the construction of approximations beyond the pair level becomes more complicated due to the presence of loops. In this thesis I describe the one-dimensional construction as well as a number of approximations suggested for higher-dimensional lattices, comparing them against a number of consistency criteria that such approximations could be expected to satisfy. I also outline a general variational principle for constructing consistent cluster approximations of arbitrary order with minimal bias, and show that the one-dimensional construction indeed satisfies this principle. Finally, I apply this variational principle to derive a novel consistent expression for symmetric three cell cluster frequencies as estimated from pair frequencies, and use this expression to construct a quantitatively improved pair approximation of the well-known lattice contact process on a hexagonal lattice.
Resumo:
The impact of Greek-Egyptian bilingualism on language use and linguistic competence is the key issue in this dissertation. The language use in a corpus of 148 Greek notarial contracts is analyzed on phonological, morphological and syntactic levels. The texts were written by bilingual notaries (agoranomoi) in Upper Egypt in the later Hellenistic period. They present, for the most part, very good administrative Greek. On the other hand, their language contains variation and idiosyncrasies that were earlier condemned as ungrammatical and bad Greek, and were not subjected to closer analysis. In order to reach plausible explanations for those phenomena, a thorough research into the sociohistorical and linguistic context was needed before the linguistic analysis. The general linguistic landscape, the population pattern and the status and frequency of Greek literacy in Ptolemaic Egypt in general, and in Upper Egypt in particular, are presented. Through a detailed examination of the notaries themselves (their names, families and handwriting), it became evident that there were one to three persons at the notarial office writing under the signature of one notary. Often the documents under one notary's name were written in the same hand. We get, therefore, exceptionally close to studying idiolects in written material from antiquity. The qualitative linguistic analysis revealed that the notaries made relatively few orthographic mistakes that reflect the ongoing phonological changes and they mastered the morphological forms. The problems arose at the syntactic level, for example, with the pattern of agreement between the noun groups or a noun with its modifiers. The significant structural differences between Greek and Egyptian can be behind the innovative strategies used by some of the notaries. Moreover, certain syntactic structures were clearly transferred from the notaries first language, Egyptian. This is obvious in the relative clause structure. Transfer can be found in other structures, as well, although, we must not forget the influence of parallel Greek structures. Sometimes these can act simultaneously. The interesting linguistic strategies and transfer features come mostly from the hand of one notary, Hermias. Some other notaries show similar patterns, for example, Hermias' cousin, Ammonios. Hermias' texts reveal that he probably spoke Greek more than his predecessors. It is possible to conclude, then, that the notaries of the later generations were more fluently bilingual; their two languages were partly integrated in their minds as an interlanguage combining elements from both languages. The earlier notaries had the two languages functionally separated and they followed the standardized contract formulae more rigidly.
Resumo:
Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.
Resumo:
A ternary thermodynamic function has been developed based on statistico-thermodynamic considerations, with a particular emphasis on the higher-order terms indicating the effects of truncation at the various stages of the treatment. Although the truncation of a series involved in the equation introduces inconsistency, the latter may be removed by imposing various thermodynamic boundary conditions. These conditions are discussed in the paper. The present equation with higher-order terms shows that the α function of a component reduces to a quadratic function of composition at constant compositional paths involving the other two components in the system. The form of the function has been found to be representative of various experimental observations.
Resumo:
The thesis is positioned in the services marketing field. Previous mobile service research has identified perceived value or relative advantage as a stable predictor of use of services. However, a more detailed view of what customers value in mobile services is needed for marketing diverse types of mobile content and attracting committed customers. The direct relationships between multidimensional value and loyalty constructs have received limited attention in the previous literature, although a multidimensional view is needed for differentiating services. This thesis studies how perceived value of mobile service use affects customer commitment, repurchase intentions, word-of-mouth and willingness to pay. The doctoral thesis consists of three journal articles and one working paper. The four papers have different sub-aims and comprise individual empirical studies. Mixed methods including both personal interviews and survey data collected from end-users of different types of mobile content services are used. The conceptual mobile perceived value model that results from the first explorative empirical study supports a six- dimensional value view. The six dimensions are further categorized into two higher order constructs: content-related perceived value (emotional, social, convenience and monetary value) and context-related (epistemic and conditional value) perceived value. Structural equation modeling is used in the other three studies to validate this framework by analyzing the relationships between context- and content-related value, and how the individual perceived value dimensions affect commitment and behavioral outcomes. Analyzing the direct relationships revealed differences in the effect of perceived value dimensions between information and entertainment mobile service user groups, between effects on commitment, repurchase intentions and word-of-mouth intentions, as well as between effects on commitment to the provider and to the mobile channel as such. This thesis contributes to earlier perceived value literature by structuring the value dimensions into two groups. Most importantly, the thesis contributes to the value and loyalty literature by increasing understanding of how the different dimensions of perceived value directly affect commitment and post-purchase intentions. The results have implications for further theory development in the electronic services field using multidimensional latent constructs, and practical implications for enhancing commitment to content provider and for differentiated marketing strategies in the mobile field. The general conclusion of this thesis is that differentiated value-based marketing of mobile services is essential for attracting committed customers who will use the same providers’ content also in the future. Minna Pihlström is associated with the Centre for Relationship Marketing and Service Management (CERS) at Hanken.
Resumo:
The existence of an icosahedral phase in Mg−Al−Ag is better understood on a crystallographic basis rather than on a quantum structural diagram basis. The quasicrystalline structure is delineated in terms of quasiperiodic arrangement of Pauling triacontahedra, which can be identified in the equilibrium structure. Subtle differences in the electron diffraction patterns have been recorded compared to the ideal quasicrystalline pattern. The misalignment of spots and distortions are better attributed to higher order rational approximate structure than anisotropic phason strain. Ares of diffuse intensity have been related to the ordering among the atoms in the clusters.
Resumo:
DNA adopts different conformations not only based on novel base pairs, but also with different chain polarities. Besides several duplex structures (A, B, Z, parallel stranded (ps)-DNA, etc.), DNA also forms higher-order structures like triplex, tetraplex, and i-motif. Each of these structures has its own biological significance. The ps-duplexes have been found to be resistant to certain nucleases and endonucleases. Molecules that promote triple-helix formation have significant potential. These investigations have many therapeutic advantages which may be useful in the regulation of the expression of genes responsible for certain diseases by locking either their transcription (antigene) or translation (antisense). Each DNA minor groove binding ligand (MGBL) interacts with DNA through helical minor groove recognition in a sequence-specific manner, and this interferes with several DNA-associated processes. Incidentally, these ligands interact with some non-B-DNA and with higher-order DNA structures including ps-DNA and triplexes. While the design and recognition of minor grooves of duplex DNA by specific MGBLs have been a topic of many reports, limited information is available on the binding behavior of MGBLs with nonduplex DNA. In this review, we summarize various attempts of the interaction of MGBLs with ps-DNA and DNA triplexes.
Resumo:
High-speed evaluation of a large number of linear, quadratic, and cubic expressions is very important for the modeling and real-time display of objects in computer graphics. Using VLSI techniques, chips called pixel planes have actually been built by H. Fuchs and his group to evaluate linear expressions. In this paper, we describe a topological variant of Fuchs' pixel planes which can evaluate linear, quadratic, cubic, and higher-order polynomials. In our design, we make use of local interconnections only, i.e., interconnections between neighboring processing cells. This leads to the concept of tiling the processing cells for VLSI implementation.