947 resultados para association rule mining
Resumo:
Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.
Resumo:
The Grand Street Boys' Association began in 1916 as a reunion of men who had grown up on or near Grand Street in the Lower East Side neighborhood of Manhattan and quickly grew into an active club, open to all men (and eventually women) regardless of religion, ethnicity, or social class. The Association promoted welfare projects, acts of fellowship and tolerance, scholarships, youth employment, war efforts, and the elimination of discrimination in sports, among other projects. The collection documents the activities of the Association, as well as the Grand Street Boys' Foundation, its financial arm established in 1945, and its Hobbycraft Program, a charitable program tasked with collecting and redistributing donated items to charitable and nonprofit organizations. Materials include administrative records, financial records, correspondence, minutes, membership records, newsletters, yearbooks, artifacts, speeches, and photographs relating to both the New York Grand Street Boys' Association and the Association's Grand Street House in England. Series I, comprising the majority of the collection, contains the records of the Grand Street Boys' Association. In it are extensive membership records, meeting minutes, annual yearbooks, financial records, administrative material, newsletters, and artifacts. Series II documents the Grand Street Boys' Foundation and contains administrative records and financial records. Some overlap of material will be found in Series I and II such as material pertaining to the relationship between the Association and Foundation. Series III consists of photographs documenting both the Association and Foundation. The photographs show members and highlight the activities of the Grand Street Boys.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
User generated information such as product reviews have been booming due to the advent of web 2.0. In particular, rich information associated with reviewed products has been buried in such big data. In order to facilitate identifying useful information from product (e.g., cameras) reviews, opinion mining has been proposed and widely used in recent years. In detail, as the most critical step of opinion mining, feature extraction aims to extract significant product features from review texts. However, most existing approaches only find individual features rather than identifying the hierarchical relationships between the product features. In this paper, we propose an approach which finds both features and feature relationships, structured as a feature hierarchy which is referred to as feature taxonomy in the remainder of the paper. Specifically, by making use of frequent patterns and association rules, we construct the feature taxonomy to profile the product at multiple levels instead of single level, which provides more detailed information about the product. The experiment which has been conducted based upon some real world review datasets shows that our proposed method is capable of identifying product features and relations effectively.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
Telecommunications network management is based on huge amounts of data that are continuously collected from elements and devices from all around the network. The data is monitored and analysed to provide information for decision making in all operation functions. Knowledge discovery and data mining methods can support fast-pace decision making in network operations. In this thesis, I analyse decision making on different levels of network operations. I identify the requirements decision-making sets for knowledge discovery and data mining tools and methods, and I study resources that are available to them. I then propose two methods for augmenting and applying frequent sets to support everyday decision making. The proposed methods are Comprehensive Log Compression for log data summarisation and Queryable Log Compression for semantic compression of log data. Finally I suggest a model for a continuous knowledge discovery process and outline how it can be implemented and integrated to the existing network operations infrastructure.
Resumo:
Segmentation is a data mining technique yielding simplified representations of sequences of ordered points. A sequence is divided into some number of homogeneous blocks, and all points within a segment are described by a single value. The focus in this thesis is on piecewise-constant segments, where the most likely description for each segment and the most likely segmentation into some number of blocks can be computed efficiently. Representing sequences as segmentations is useful in, e.g., storage and indexing tasks in sequence databases, and segmentation can be used as a tool in learning about the structure of a given sequence. The discussion in this thesis begins with basic questions related to segmentation analysis, such as choosing the number of segments, and evaluating the obtained segmentations. Standard model selection techniques are shown to perform well for the sequence segmentation task. Segmentation evaluation is proposed with respect to a known segmentation structure. Applying segmentation on certain features of a sequence is shown to yield segmentations that are significantly close to the known underlying structure. Two extensions to the basic segmentation framework are introduced: unimodal segmentation and basis segmentation. The former is concerned with segmentations where the segment descriptions first increase and then decrease, and the latter with the interplay between different dimensions and segments in the sequence. These problems are formally defined and algorithms for solving them are provided and analyzed. Practical applications for segmentation techniques include time series and data stream analysis, text analysis, and biological sequence analysis. In this thesis segmentation applications are demonstrated in analyzing genomic sequences.
Resumo:
Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.
Resumo:
Cell transition data is obtained from a cellular phone that switches its current serving cell tower. The data consists of a sequence of transition events, which are pairs of cell identifiers and transition times. The focus of this thesis is applying data mining methods to such data, developing new algorithms, and extracting knowledge that will be a solid foundation on which to build location-aware applications. In addition to a thorough exploration of the features of the data, the tools and methods developed in this thesis provide solutions to three distinct research problems. First, we develop clustering algorithms that produce a reliable mapping between cell transitions and physical locations observed by users of mobile devices. The main clustering algorithm operates in online fashion, and we consider also a number of offline clustering methods for comparison. Second, we define the concept of significant locations, known as bases, and give an online algorithm for determining them. Finally, we consider the task of predicting the movement of the user, based on historical data. We develop a prediction algorithm that considers paths of movement in their entirety, instead of just the most recent movement history. All of the presented methods are evaluated with a significant body of real cell transition data, collected from about one hundred different individuals. The algorithms developed in this thesis are designed to be implemented on a mobile device, and require no extra hardware sensors or network infrastructure. By not relying on external services and keeping the user information as much as possible on the user s own personal device, we avoid privacy issues and let the users control the disclosure of their location information.
Resumo:
Major infrastructure and construction (MIC) projects are those with significant traffic or environmental impact, of strategic and regional significance and high sensitivity. The decision making process of schemes of this type is becoming ever more complicated, especially with the increasing number of stakeholders involved and their growing tendency to defend their own varied interests. Failing to address and meet the concerns and expectations of stakeholders may result in project failures. To avoid this necessitates a systematic participatory approach to facilitate decision-making. Though numerous decision models have been established in previous studies (e.g. ELECTRE methods, the analytic hierarchy process and analytic network process) their applicability in the decision process during stakeholder participation in contemporary MIC projects is still uncertain. To resolve this, the decision rule approach is employed for modeling multi-stakeholder multi-objective project decisions. Through this, the result is obtained naturally according to the “rules” accepted by any stakeholder involved. In this sense, consensus is more likely to be achieved since the process is more convincing and the result is easier to be accepted by all concerned. Appropriate “rules”, comprehensive enough to address multiple objectives while straightforward enough to be understood by multiple stakeholders, are set for resolving conflict and facilitating consensus during the project decision process. The West Kowloon Cultural District (WKCD) project is used as a demonstration case and a focus group meeting is conducted in order to confirm the validity of the model established. The results indicate that the model is objective, reliable and practical enough to cope with real world problems. Finally, a suggested future research agenda is provided.
Resumo:
Springsure Creek Coal (SCC) intends to develop a coal mine using the long wall mining process under grain farming land near Emerald in Central Queensland (CQ). While this technology will result in some subsidence of the land surface, SCC wishes to maintain productivity of the grain cropping land in the precinct after coal mining. However, the impact of the surface subsidence resulting from that mining process on productivity of cropping land in any Australian landscape is currently unclear. A research protocol to investigate the impacts of subsidence on grain productivity for when the SCC project becomes operational is proposed. The protocol has wider application for other similar mining projects throughout the country. A copy of the full report is accessible on www.aginstitute.com.au.