960 resultados para amorphous thin films


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrodeposition experiments conducted in a thin-layer horizontal cell containing a nonbinary aqueous electrolyte prepared with cupric sulfate and sodium sulfate gave rise to fingerlike deposits, a novel and unexpected growth mode in this context. Both the leading instability from which fingers emerge and some distinctive features of their steady evolution are interpreted in terms of a simple model based on the existing theory of fingering in fluids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epitaxial thin films of Y¿doped SrZrO3 have been grown on MgO(001) by pulsed laser deposition. The deposition process has been performed at temperatures of 1000¿1200¿°C and at an oxygen pressure of 1.5×10¿1 mbar. The samples are characterized by Rutherford backscattering spectrometry/channeling (RBS/C) and x¿ray diffraction (XRD). We found an epitaxial relationship of SrZrO3 (0k0) [101]¿MgO (001) [100]. Good crystalline quality is confirmed by RBS/C minimum yield values of 9% and a FWHM of 0.35° of the XRD rocking curve.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on the growth of epitaxial YBa2Cu3O7 thin films on X-cut LiNbO3 single crystals. The use of double CeO2/YSZ buffer layers allows a single in-plane orientation of YBa2Cu3O7, and results in superior superconducting properties. In particular, surface resistance Rs values of 1.4 m¿ have been measured at 8 GHz and 65 K. The attainment of such low values of Rs constitutes a key step toward the incorporation of high Tc materials as electrodes in photonic and acoustic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The process of hydrogen desorption from amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in a-Si is about 1.15 eV. It is shown that this result is valid for a-Si:H films, too.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Orthorhombic YMnO3 (YMO) epitaxial thin films were deposited on SrTiO3 (STO) single-crystal substrates. We show that the out-of-plane texture of the YMO films can be tailored using STO substrates having (001), (110), or (111) orientations. We report on the magnetic properties of the YMO(010) films grown on STO(001) substrates. The dependence of the susceptibility on the temperature indicates that the films are antiferromagnetic below the Néel temperature (around 35 K). Orthorhombic YMO(010) films were also deposited on an epitaxial buffer layer of ferromagnetic and metallic SrRuO3 (SRO). The magnetic hysteresis loops of SRO show exchange bias at temperatures below the Néel temperature of YMO. These results confirm that the YMO films are antiferromagnetic and demonstrate that magnetoelectric YMO can be integrated in functional epitaxial architectures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an ellipsometric technique and ellipsometric analysis of repetitive phenomena, based on the experimental arrangement of conventional phase modulated ellipsometers (PME) c onceived to study fast surface phenomena in repetitive processes such as periodic and triggered experiments. Phase modulated ellipsometry is a highly sensitive surface characterization technique that is widely used in the real-time study of several processes such as thin film deposition and etching. However, fast transient phenomena cannot be analyzed with this technique because precision requirements limit the data acquisition rate to about 25 Hz. The presented new ellipsometric method allows the study of fast transient phenomena in repetitive processes with a time resolution that is mainly limited by the data acquisition system. As an example, we apply this new method to the study of surface changes during plasma enhanced chemical vapor deposition of amorphous silicon in a modulated radio frequency discharge of SiH4. This study has revealed the evolution of the optical parameters of the film on the millisecond scale during the plasma on and off periods. The presented ellipsometric method extends the capabilities of PME arrangements and permits the analysis of fast surface phenomena that conventional PME cannot achieve.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CoFe-Ag-Cu granular films, prepared by rf sputtering, displayed magnetic domain microstructures for ferromagnetic concentrations above about 32% at, and below the percolation threshold. All samples have a fcc structure with an (111) texture perpendicular to the film plane. Magnetic force microscopy (MFM) showed a variety of magnetic domain microstructures, extremely sensitive to the magnetic history of the sample, which arise from the balance of the ferromagnetic exchange, the dipolar interactions and perpendicular magnetocrystalline anisotropy, MFM images indicate that in virgin samples, magnetic bubble domains with an out-of-plane component of the magnetization are surrounded by a quasicontinuous background of opposite magnetization domains. The application of a magnetic field in different geometries drastically modifies the microstructure of the system in the remanent state: i) for an in-plane field, the MFM images show that most of the magnetic moments are aligned along the film plane, ii) for an out-of-plane field, the MFM signal increases about one order of magnitude, and out-of-plane striped domains with alternating up and down magnetization are stabilized. Numerical simulations show that a variety of metastable domain structures (similar to those observed experimentally) can be reached, depending on magnetic history, in systems with competing perpendicular anisotropy, exchange and dipolar interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CoFe-AgCu granular films of compositions ranging from 0.17-0.44 ferromagnetic atomic concentration were prepared by rf sputtering. The microstructure and the transport and magnetic properties suggested that this family of samples can be classified into two groups with a crossover concentration at about 32 at. %. The experimental results for samples Co34Fe8Ag54Cu4 and Co18Fe8Ag70Cu4, which are representative of both different behaviors, are discussed. For the as-prepared sample with higher CoFe content, an uncompensated out-of-plane antiferromagneticlike microstructure with dominant demagnetizing interactions was observed. The particle growth through the annealing led to large in-plane ferromagneticlike clusters with dominant magnetizing interactions. The thermal dependence of the remanence-to-saturation ratio of the as-prepared and annealed samples indicated the existence of a high degree of magnetic correlations leading to a very low magnetoresistivity: In none of the cases was a Stoner¿Wohlfarth behavior observed. On the contrary, for the sample with lower CoFe content, the magnetoresistivity change was much higher, and the remanence followed the expected behavior, since magnetic correlations were strongly reduced through dilution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a comprehensive study of the low-temperature magnetic relaxation in random magnets. The first part of the paper contains theoretical analysis of the expected features of the relaxation, based upon current theories of quantum tunneling of magnetization. Models of tunneling, dissipation, the crossover from the thermal to the quantum regime, and the effect of barrier distribution on the relaxation rate are discussed. It is argued that relaxation-type experiments are ideally suited for the observation of magnetic tunneling, since they automatically provide the condition of very low barriers. The second part of the paper contains experimental results on transition-metal¿rare-earth amorphous magnets. Structural and magnetic characterization of materials is presented. The temperature and field dependence of the magnetic relaxation is studied. Our key observation is a nonthermal character of the relaxation below a few kelvin. The observed features are in agreement with theoretical suggestions on quantum tunneling of magnetization.