964 resultados para Taijitu curve di Bézier arte matematica religione
Resumo:
Il lavoro nasce dall'esigenza di comprendere quali sono gli ostacoli concettuali e metodologici che gli studenti della scuola secondaria di secondo grado incontrano nello studio delle dimostrazioni. Tale lavoro è in parte dedicato alla descrizione, mediante la proposizione di ragionamenti scorretti, delle tipologie più diffuse di errori commessi nel condurre una dimostrazione, partendo dall'esplicitazione dei requisiti necessari della stessa in contesto logico. La realizzazione di un’esperienza didattica rivolta a studenti delle classi seconde, ha permesso di concretizzare le ipotesi avanzate durante la fase descrittiva. In particolare ha favorito l’individuazione di ulteriori spunti di riflessione su come condurre lo studio delle dimostrazioni e ha messo in evidenza come un’analisi che prescinde dal piano epistemologico risulta fuorviante e inappropriata.
Resumo:
The Curie-Weiss model is defined by ah Hamiltonian according to spins interact. For some particular values of the parameters, the sum of the spins normalized with square-root normalization converges or not toward Gaussian distribution. In the thesis we investigate some correlations between the behaviour of the sum and the central limit for interacting random variables.
Resumo:
Scopo della tesi è la trattazione dei logaritmi a partire dalla storia di quest'ultimi, al loro sviluppo, fino ad arrivare alle diverse applicazioni dei logaritmi in svariate discipline. La tesi è strutturata in quattro capitoli, nel primo dei quali si parte analizzando quali istanze teoriche e necessità pratiche abbiano preparato la strada all'introduzione dei logaritmi. Vengono riportati alcuni passi del testo più importante dedicato da Nepero ai logaritmi, Mirifici Logarithmorum Canonis Constructio, la modifica ad opera di Henry Briggs e la diffusione dei logaritmi in gran parte dell' Europa. Nel secondo capitolo viene evidenziato il legame tra i logaritmi e la geometria dell'iperbole per poi passare alla trattazione dei primi studi sulla curva logaritmica. Nel terzo capitolo viene esaminata la controversia tra Leibniz e Bernoulli sul significato da attribuire ai logaritmi dei numeri negativi soffermandosi su come Eulero uscì da una situazione di stallo proponendo una teoria dei logaritmi dei numeri complessi. Nel quarto ed ultimo capitolo vengono analizzati i diversi utilizzi della scala logaritmica ponendo soprattutto l'attenzione sul regolo calcolatore, arrivando infine a mostrare le applicazioni dei logaritmi in altre discipline.
Resumo:
La teoria dei nodi è una parte della topologia che studia l'equivalenza dei nodi, in particolare il problema di quando due nodi possono essere trasformati l'uno nell'altro con un movimento continuo. L'intento di questo progetto di tesi è quello di proporre a ragazzi di una scuola superiore un tema attuale come la teoria dei nodi, osservandone le reazioni di fronte a un argomento matematico molto distante da ciò che viene usualmente trattato a scuola, nella speranza di infondere loro il piacere della scoperta, in particolare in matematica.
Resumo:
La geometria euclidea risulta spesso inadeguata a descrivere le forme della natura. I Frattali, oggetti interrotti e irregolari, come indica il nome stesso, sono più adatti a rappresentare la forma frastagliata delle linee costiere o altri elementi naturali. Lo strumento necessario per studiare rigorosamente i frattali sono i teoremi riguardanti la misura di Hausdorff, con i quali possono definirsi gli s-sets, dove s è la dimensione di Hausdorff. Se s non è intero, l'insieme in gioco può riconoscersi come frattale e non presenta tangenti e densità in quasi nessun punto. I frattali più classici, come gli insiemi di Cantor, Koch e Sierpinski, presentano anche la proprietà di auto-similarità e la dimensione di similitudine viene a coincidere con quella di Hausdorff. Una tecnica basata sulla dimensione frattale, detta box-counting, interviene in applicazioni bio-mediche e risulta utile per studiare le placche senili di varie specie di mammiferi tra cui l'uomo o anche per distinguere un melanoma maligno da una diversa lesione della cute.
Resumo:
In questa tesi ho ripercorso storicamente i modelli del piano proiettivo studiando in particolare quelli di Möbius, Klein e Grassman, fino ad arrivare a quelli più comunemente usati, mostrando le loro equivalenze.
Resumo:
La tesi riguarda la didattica della matematica e parla del modo di fare didattica negli istituti secondari di secondo grado attraverso l'analisi di un caso particolare: la didattica dei numeri complessi. La didattica verrà analizzata per prima cosa a livello generale attraverso l'esposizione dei punti principali della riforma Gelmini, e, successivamente, in particolare attraverso l'analisi della didattica dei numeri complessi nei licei scientifici. Di quest'ultima verranno presentati: gli strumenti con cui viene svolta, la modalità con cui vengono presentati i concetti, un nuovo metodo per migliorarla e, infine, il modo in cui i ragazzi la percepiscono. Questi elementi si traducono, rispettivamente, nell'analisi del libro `Matematica a colori', nell'esposizione di una lezione-tipo, nella proposta dell'utilizzo della storia della matematica e infine in un questionario posto agli alunni. Quanto emerso verrà confrontato con le indicazioni nazionali di alcuni stati esteri e il tutto verrà utilizzato per `leggere' i risultati del TIMMS ADVANCED 2008.
Resumo:
Questa tesi generalizza alcuni concetti studiati nei corsi di algebra, per esempio gli spazi vettoriali, il coniugio, le isometrie del piano, utilizzando la nozione di azione esterna.
Resumo:
La Congettura di Razumov-Strogranov, dimostrata solo nel 2010 con metodi puramente combinatori da due matematici italiani, Contini e Sportiello, ha affascinato molti studiosi di combinatoria che si sono dedicati allo studio delle configurazioni FPL. In questa tesi viene studiato il ruotamento, una speciale permutazione delle configurazioni FPL con determinate condizioni al bordo che è lo strumento fondamentale per la dimostrazione della sovramenzionata congettura.
Resumo:
Scopo della tesi è illustrare l'origine della nozione di logaritmo nei suoi primi decenni dalla nascita, partendo dalle opere di J. Napier (Nepero, 1550-1617) fino a B. Cavalieri (1598-1647), che insieme a J. Keplero (1571-1630) concludono la cosiddetta età pioneristica. Nel primo capitolo sono esposti alcuni mezzi di calcolo usati nel XVI secolo, come i "bastoncini di Nepero"; e il confronto della progressione geometrica con quella aritmetica, che con la conoscenza delle leggi esponenziali, porterà all'invenzione dei logaritmi. Il secondo capitolo è dedicato interamente a Napier (fatto salvo un cenno all'opera di Burgi), con lo scopo di illustrare i suoi due maggiori trattati sui logaritmi: il primo fu sostanzialmente una tavola di numeri da lui inizialmente chiamati "numeri artificiali" e successivamente definiti "logaritmi"; il secondo, curato e pubblicato dal figlio, è un trattato nel quale giustifica il nuovo concetto da lui ottenuto ed i metodi usati per il calcolo delle tavole. Con Henry Briggs (capitolo III) la teoria del logaritmo giunge a maturazione. Egli stesso definì una propria funzione logaritmica Bl_1 che, in seguito, mutò dopo un paio di incontri con Napier. Nelle tavole di Briggs il logaritmo da lui introdotto avrà base 10 e il logaritmo di 1 sarà nullo, definendo così il nostro usuale logaritmo decimale. Nel quarto capitolo mi occupo della diffusione in Italia e in Germania delle nozioni di logaritmo, da parte, rispettivamente di B. Cavalieri e J. Keplero. Cavalieri scrisse parecchio sui logaritmi, pubblicando anche proprie tavole, ma non sembra che abbia raggiunto risultati di grande rilevanza nel campo, tuttavia seppe usare la teoria dei logaritmi in campo geometrico giungendo a formule interessanti. La parte storica della tesi si conclude con alcune notizie sul contributo di Keplero e la diffusione della nozione dei logaritmi neperiani in Germania. La mia esposizione si conclude con qualche notizia sull'uso dei logaritmi e sul regolo calcolatore dalla fine del XIX secolo fin verso gli anni ’70 del secolo scorso.
Resumo:
Il lavoro di tesi svolto propone diversi argomenti di geometria la cui costruzione è stata fatta con il software GeoGebra. Propone anche alcuni metodi di integrazione numerica realizzati con esso e anche un modo di approssimare la superficie di rotazione di una funzione sfruttando tali metodi. Gli argomenti trattati spaziano da quelli classici della geometria euclidea a temi affrontati più recentemente esaminando sia oggetti rappresentabili sul piano sia nello spazio tridimensionale.
Resumo:
Attraverso alcuni esempi la tesi mostra che una stessa varietà differenziabile può essere munita di strutture riemanniane diverse e, a seconda della metrica, può variare la dimensione del più piccolo spazio euclideo in cui la varietà può essere immersa.
Resumo:
Questo elaborato scritto tratta la classificazione e la modellizzazione della fisica delle galassie. La prima parte illustra la classificazione morfologica delle galassie. Descrivo la classificazione di Hubble perché è la prima in ordine cronologico, la più semplice e la più importante. In seguito espongo le modifiche introdotte da Sandage e De Vaucouleurs. In particolare cerco di giustificare l’importanza delle classificazioni morfologiche come punto di partenza per una comprensione e una modellizzazione della fisica delle galassie. Nella seconda parte mi concentro sulle caratteristiche fotometriche e cinematiche interne relative a due particolari tipi di galassie: le Ellittiche e le Spirali. Approfondisco due argomenti in particolare: i profili di brillanza delle Ellittiche per quanto riguarda le caratteristiche fotometriche delle Ellittiche e le curve di rotazione delle Spirali, per le caratteristiche cinematiche delle Spirali. Questi due argomenti sono stati scelti perché il primo fornisce un modello analitico per descrivere la luminosità delle Ellittiche e il secondo permette di rappresentare, sempre tramite una modellizzazione, la cinematica delle Spirali, in particolar modo del loro disco.
Resumo:
La visione è il processo cerebrale mediante il quale l'organismo umano riesce a estrarre informazioni dal dato visivo proveniente dalla retina. Tentare di imitare questo comportamento mediante un elaboratore elettronico, il cosiddetto problema della visione, è una delle maggiori sfide del XXI secolo. In questo contesto lo scopo della tesi è dare una descrizione degli strumenti matematici che permettono di modellizzare la visione stereoscopica ed esporre le condizioni sotto le quali sia possibile effettuare una ricostruzione 3D ambientale a partire da due immagini della stessa scena nell'ipotesi di assenza di errore.
Resumo:
In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.