944 resultados para Seashore biology
Resumo:
This study evaluated the population biology of Ctenosciaena gracilicirrhus (Perciformes: Sciaenidae) in a shallow non-estuarine coastal area of southeastern Brazil. Monthly samples were taken from October 2003 through October 2004, in two distinct areas at depths from 1 to 4 m. C. gracilicirrhus was generally among the most abundant fish species during the period. Its density was significantly higher in a single sampling month, May 2004, in the South area, which may be explained by its migratory behavior together with its preference for deeper areas. Such behavior may lead to bias in community estimates that use few or only seasonal samples. C. gracilicirrhus individuals ranged from 4.0 to 10.2 cm long, with a main mode from 7.5 to 9.0 cm and a significant decrease in mean size from June onward. The estimation of body growth parameters was compromised by this population feature. Similarly, the prey spectrum was difficult to determine because of the deteriorated condition of the stomach contents, although crustaceans were clearly the most important items ingested. Amphipoda was the only subgroup that could be identified more precisely, mainly by the construction of their tubes.
Resumo:
Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.
Resumo:
The recent achievement of synthesising a functioning bacterial chromosome marks a coming of age for engineering living organisms. In the future this should allow the construction of novel organisms to help solve the problems facing the human race, including health care, food, energy and environmental protection. In this minireview, the current state of the field is described and the role of synthetic biology in biotechnology in the short and medium term is discussed. It is particularly aimed at the needs of food technologists, nutritionists and other biotechnologists, who might not be aware of the potential significance of synthetic biology to the research and development in their fields. The potential of synthetic biology to produce interesting new polyketide compounds is discussed in detail.
Resumo:
BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.
Resumo:
[EN]This is the first time that the reproductive characteristics of Mycteroperca fusca have been analyzed over the whole area of its distribution, using the parameter of the histological analysis of the gonads. This species is a protogynous hermaphrodite with a marked predominance of females (1:4.9). The males and females displayed marked differences in the distribution of the sizes. The females were distributed over all the size ranges analyzed (229-725 mm total length), whereas the males were observed within the larger sizes, as of 428 mm. One transitional specimen (610 mm total length) was observed. The size at which the females first reached sexual maturity was 335 mm total length whereas the size at which 95% of females reached sexual maturity was 398 mm total length. The average size at which 50% of the females had inverted to the male condition was found to be 678 mm total length. The range of sizes at which the process of sexual inversion took place was broad, between 428 and 725 mm total length. The reproductive period was long, almost covering the annual cycle, although the maximum activity was observed between April and October, with a peak in spawning in June-July.
Resumo:
[EN] This crab was captured in the whole range of depths sampled, although its highest abundance was found between 600 and 800 m, on muddy-rocky bottoms. Moreover, significant differences were observed in the average weight and length, according to depth of capture, island of origin, and date of survey. In general, the b parameter of length-weight relationship indicates a negative allometric growth pattern, although in some cases it was not statistically different from isometry, particularly in males. Males were heavier, larger, and more abundant in catches than females.
Resumo:
[EN] The reproductive biology of the sea cucumber Holothuria sanctori was studied over 24 months (February 2009 to January 2011) at Gran Canaria through the gonad index and a combination of macro- and microscopic analysis of the gonads. Holothuria sanctori showed a 1:1 sex ratio and a seasonal reproductive cycle with a summer spawning: the mean gonad index showed a maximum (3.99±0.02) in summer (June-July) and a minimum (0.05±0.04) between late autumn (November) and early spring (March). Females had significantly wider gonad tubules than males. First maturity occurred at a size of 201 to 210 mm, a gutted body weight of 101 to 110 g and a total weight of 176 to 200 g. Holothuria sanctori shows a typical temperate species reproduction pattern. These results could be useful for managing current extractions of H. sanctori in the Mediterranean and in case a specific fishery is started in the eastern Atlantic region.
Resumo:
[EN] Preliminary data of the length-weight relationship and reproduction of the bogue Boops boops off Gran Canaria (Canary Islands, Central-east Atlantic) are provided. Two thousand and twenty-one individuals of bogue, ranging from 4 to 34 cm TL, were obtained from purse seine commercial landing. Reproduction parameters as sex determination, duration of spawning season, size at first maturity and GSI variation along time were determinated based on macroscopic evaluation of gonads. The results obtained suggest that bogue is a total spawner, with a long spawning season extending from January to May. Size at first maturity was 16.7 and 17.9 cm TL for males and females, respectively. The length-weight relationship obtained showed a positive allometry in both sexes
Resumo:
The development of microlectronic lab-on-a-chip devices (LOACs) can now be pursued thanks to the continous advances in silicon technology. LOACs are miniaturized devices whose aim is to perform in a more efficient way specific chemical or biological analysis protocols which are usually carried out with traditional laboratory equipment. In this application area, CMOS technology has the potential to integrate LOAC functionalities for cell biology applications in single chips, e.g. sensors, actuators, signal conditioning and processing circuits. In this work, after a review of the state of the art, the development of a CMOS prototype chip for individual cell manipulation and detection based on dielectrophoresis will be presented. Issues related to the embedded optical and capacitive detection of cells will be discussed together with the main experimental results obtained in manipulation and detection of living cells and microparticles.