1000 resultados para STERN CELLS
Resumo:
In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.
Resumo:
Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (similar to 270 % to that of untreated sample) and SaOS2 (similar to 280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.
Resumo:
Here, we have discovered CXI-benzo-84 as a potential anticancer agent from a library of benzimidazole derivatives using cell based screening strategy. CXI-benzo-84 inhibited cell cycle progression in metaphase stage of mitosis and accumulated spindle assembly checkpoint proteins Mad2 and BubR1 on kinetochores, which subsequently activated apoptotic cell death in cancer cells. CXI-benzo-84 depolymerized both interphase and mitotic microtubules, perturbed EB1 binding to microtubules and inhibited the assembly and GTPase activity of tubulin in vitro. CXI-benzo-84 bound to tubulin at a single binding site with a dissociation constant of 1.2 +/- 0.2 mu M. Competition experiments and molecular docking suggested that CXI-benzo-84 binds to tubulin at the colchicine-site. Further, computational analysis provided a significant insight on the binding site of CXI-benzo-84 on tubulin. In addition to its potential use in cancer chemotherapy, CXI-benzo-84 may also be useful to screen colchicine-site agents and to understand the colchicine binding site on tubulin. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausibleapriori, but showthat none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations. (C) 2013 AIP Publishing LLC.
Resumo:
Background: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). Materials and Methods: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. Results: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. Conclusion: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.
Resumo:
Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.
Resumo:
Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI(+) cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and alpha-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and alpha-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.
Resumo:
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.
Resumo:
Bacterial surface polymers play a major role in the adhesion of bacterial cells to solid surfaces. Lipopolysaccharides (LPS) are essential constituents of the cell walls of almost all Gram-negative bacteria. This paper reports the results of the investigations on the role of outer membrane exopolymers (LPS) of the chemolithotroph, Acidithiobacillus ferrooxidans, in adsorption of the cells onto pyrite and chalcopyrite. Optimization of EDTA treatment for removal of LPS from cell surface and the surface characterization of EDTA-treated cells are outlined. There was no change in cell morphology or loss in cell motility upon treatment with upto 0.04 mM EDTA for 1 h. Partial removal of LPS by EDTA treatment resulted in reduced adsorption of the cells on both pyrite and chalcopyrite. The protein profile of the EDTA-extractable fraction showed presence of certain outer membrane proteins indicating that EDTA treatment results in temporary gaps in the outer membrane. Also, specificity towards pyrite compared to chalcopyrite that was exhibited by untreated cells was lost when their exopolymer layers were stripped off, which could be attributed to the role of outer membrane proteins in the mineral-specificity exhibited by the bacteria. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Gold nanoparticles decorated reduced graphene oxide (Au-RGO) catalyst for O-2 electrode is prepared by in situ reduction of Au3+ ions and graphene oxide dispersed in water. The Au nanoparticles are uniformly distributed on the two-dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using Au-RGO catalyst exhibit an initial discharge capacity as high as 5.89 mA h cm-(2) (5230 mA h g(-1))at a current density of 0.1 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(Au-RGO) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(Au-RGO) cells are cycled over about 120 charge-discharge cycles. The results suggest that Au-RGO is a promising catalyst for rechargeable Li-O-2 cells.
Resumo:
The present highlight discusses major work in the synthesis of low bandgap diketopyrrolopyrrole (DPP)-based polymers with donor-acceptor-donor (D-A-D) approach and their application in organic electronics. It examines the past and recent significant advances which have led to development of low bandgap DPP-based materials with phenyl and thiophene as donors. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4241-4260
Resumo:
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.
Resumo:
The growth of neuroblastoma (N2a) and Schwann cells has been explored on polymer derived carbon substrates of varying micro and nanoscale geometries: resorcinol-formaldehyde (RE) gel derived carbon films and electrospun nanofibrous (similar to 200 nm diameter) mat and SU-8 (a negative photoresist) derived carbon micro-patterns. MTT assay and complementary lactate dehydrogenase (LDH) assay established cytocompatibility of RE derived carbon films and fibers over a period of 6 days in culture. The role of length scale of surface patterns in eliciting lineage-specific adaptive response along, across and on the interspacing between adjacent micropatterns (i.e., ``on'', ``across'' and ``off'') has been assayed. Textural features were found to affect 3',5'-cyclic AMP sodium salt-induced neurite outgrowth, over a wide range of length scales: from similar to 200 nm (carbon fibers) to similar to 60 mu m (carbon patterns). Despite their innate randomness, carbon nanofibers promoted preferential differentiation of N2a cells into neuronal lineage, similar to ordered micro-patterns. Our results, for the first time, conclusively demonstrate the potential of RE-gel and SU-8 derived carbon substrates as nerve tissue engineering platforms for guided proliferation and differentiation of neural cells in vitro. (C) 2013 Elsevier Ltd. All rights reserved.