845 resultados para SILICA GLASS
Resumo:
In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.
Resumo:
Blue and ultraviolet luminescence in (Pr3+, Gd3+) doped fluoroindate glass is studied for excitation in the red region (≈590 nm). Frequency upconversion (UC) is observed due to energy transfer (ET) among three Pr3+ ions initially excited to the D21 state corresponding to the ET process D21 + D21 + D21 → S01 + H53 + H53. Additionally, UC luminescence from states P 72 6 and I 72 6 of Gd3+ is observed for an excitation wavelength resonant with transitions of the Pr3+ ions. The characterization of the luminescence signals allowed to determine ET rate among the Pr3+ ions and provides evidence of interconfigurational ET between Gd3+ and Pr3+ ions. © 2006 American Institute of Physics.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
Silica gel with a specific area of 382 m2 g-1 and an average pore diameter of 60 Å was chemically modified with 2-amino-1,3,4-thiadiazole, for the purpose of selective adsorption of heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). The following properties of this functionalized silica gel are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II). The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. ©2006 Sociedade Brasileira de Química.
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney test at 5% significance level. Two-by-two comparisons showed statistically significant difference (p<0.05) between all materials, except for Ketac Molar and Vidrion R, which had statically similar results (p>0.05). Regarding their results of surface roughness, the materials can be presented in a crescent order, as follows: Ketac Molar < Vidrion R < Fuji IX < Vitromolar. In conclusion, from the tested glass ionomer cements, Fuji IX, Ketac Molar and Vidrion R presented acceptable surface roughness after setting reaction while Vitromolar showed remarkably higher surface roughness.
Resumo:
Objective: The purpose of this study was to analyze histologically the influence of bioactive glass (BG) with or without a calcium sulfate (CS) barrier on bone healing in surgically created critical-size defects (CSD) in rat calvaria. Material and methods: A CSD was made in each calvarium of 48 rats. They were divided into three groups: C (control): blood clot only; BG: defect filled with BG; and BG/CS: defect filled with BG covered by a CS barrier. Animals were euthanized at 4 or 12 weeks. Formation of new bone was evaluated histomorphometrically. Results: No defect completely regenerated with bone. BG particles were observed in Groups BG and BG/CS at both periods of analysis. The thickness throughout the healing area in Groups BG and BG/CS was similar to the original calvarium, while Group C presented a thin connective tissue in the center of the defect in both periods of analysis. At 4 weeks, Groups C and BG/CS presented significantly more bone formation than Group BG. No significant differences were found between Groups C and BG/CS. At 12 weeks, no significant differences in the amount of bone formation were observed among the three groups. When comparing 4 and 12 weeks, there was a significant increase in new bone formation within groups BG and BG/CS, but not C. Conclusion: BG particles, used with or without a CS barrier, maintained the volume and contour of the area grafted in CSD. However, they did not lead to a significant difference in bone formation when compared with control at 12 weeks post-operative. © 2007 Blackwell Munksgaard.
Resumo:
This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.
Resumo:
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Resumo:
Studies of the third harmonic of the AC-susceptibility were conducted to detect the boundaries of the linear regime of the magnetic response of granular Nb samples. These studies reveal the extent of the region, on the phase diagram, where the magnetic response is linear, which corresponds to the disordered phase of Vortex Matter. The present work addresses the correlation between a linear response and experimental parameters such as the frequency and the amplitude of the excitation field. The order-disorder border has been extracted from the onset temperature of the third harmonic measured at low-frequencies and low-excitation fields in the presence of dc magnetic fields. © 2008 IOP Publishing Ltd.
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.
Resumo:
The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC) - Vidrion R (V, SS White), Fuji IX (F, GC Corp.), Magic Glass ART (MG, Vigodent), Maxxion R (MR, FGM) and ChemFlex (CF, Dentsply) - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (α = 5%). The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 ± 3.6a), protected with GIC varnish (59.6 ± 3.4b) and protected with nail varnish (62.7 ± 2.8ab); for F, at 7 days, without protection (97.8 ± 3.7ab), protected with varnish (95.9 ± 3.2b) and protected with nail varnish (100.8 ± 3.4a); and at 30 days, for F, without protection (98.8 ± 2.6b), protected with varnish (103.3 ± 4.4a) and protected with nail varnish (101 ± 4.1ab) and, for V, without protection (46 ± 1.3b), protected with varnish (49.6 ± 1.7ab) and protected with nail varnish (51.1 ± 2.6a). The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
Aim: The aim of this in vitro study was to evaluate the surface roughness of three glass ionomer cements (GICs) indicated for ART restorations. Methods: Ten cylindrical specimens of three commercial glass ionomers cements (Vidrion R - S.S. White, Maxxion R - FGM and Vitromolar DFL) were prepared (n=30) without surface finishing or protection. Twenty-four hours after preparation, the surface roughness measurements were obtained as the mean of three readings of the surface of each specimen by profilometry. The roughness values (Ra, μm) were subjected to one-way ANOVA and Tukey's test (p<0.05). Results: No statistically significant differences were observed between Vidrion R (0.18 ± 0.05) and Vitromolar (0.21 ± 0.05), whereas Maxxion R presented significantly higher roughness values than those of the other materials. Conclusions: It may be concluded that characteristics of particle size and composition of the different GICs affected their surface roughness 24 h after preparation.