897 resultados para Propiedades medicinales
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
¿Por qué prismas y poliedros regulares tienen un rol protagónico en la matemática escolar? Los poliedros arquimedianos, ¿pueden ser relevantes para su inclusión en la matemática escolar de Educación Secundaria y Formación de profesores? En este taller proponemos reconocer y visualizar poliedros semirregulares con el uso del programa Poly Pro, descubrir y describir algunas de sus propiedades, identificar cuáles de ellos son arquimedianos, analizar las relaciones entre esta familia de poliedros y los poliedros regulares, explorar maneras de construirlos -a partir del análisis de grabados del artista renacentista W. Jamnitzer-, conjeturar acerca de la cantidad de elementos de esa familia y ensayar diferentes justificaciones. Es decir, proponemos una actividad que favorezca el tránsito entre los niveles 0, 1 y 2 propuestos por Van Hiele en el contexto de la geometría euclidiana del espacio, articulada a su vez con la forma de concebir la actividad geométrica de Kuzniak, a través de paradigmas caracterizados por el interés por resolver problemas específicos.
Resumo:
Se presenta un modelo geométrico para la construcción de un segmento llamado Escintor, que divide a un triángulo en dos poligonales de igual perímetro, además se demuestra la existencia de otras rectas notables en un triángulo denominadas Mescintriz y Vescintriz con propiedades similares a las otras rectas ya conocidas; así mismo se muestra como el Mescincentro y el Vescincentro, puntos donde se intersecan las Mescintrices y las Vescintrices respectivamente, están alineados con el Baricentro y el Incentro en una recta que guarda mucha semejanza con la Recta de Euler.
Resumo:
Los 5 poliedros regulares han sido modelo de la ciencia para los griegos y modelo de la astronomía para Kepler. Sin embargo, a pesar de su gran valor epistemológico su estudio es normalmente muy superficial en los cursos de Secundaria. Hace 20 años me formulé esta sencilla pregunta: ¿Cómo podemos calcular el volumen del icosaedro y del dodecaedro regular, conociendo solamente la medida de la arista? Esta pregunta dio lugar a una fascinante investigación, que comenzó en la búsqueda de diferentes medios para construir poliedros (se puede ver en la foto de la derecha un modelo a usar durante el taller) , un trabajo muy interesante con el álgebra de los irracionales cuadráticos, el uso de la trigonometría y el descubrimiento de varias y sorpresivas propiedades geométricas relacionadas algunas con el número áureo. Durante el curso los participantes aprenderán a construir, con regla y compás el pentágono regular(comenzando con su lado) , de la forma más simple y exacta, con su justificación paso a paso. Esto es imprescindible ya que en ambos el icosa y el dode hay numerosos pentágonos regulares. Este curso o taller es tan sólo un pequeño paseo en el increíble mundo de los 5 poliedros regulares, un mundo lleno de tesoros matemáticos, un mundo que espera a ser explorado y descubierto.
Resumo:
Los conocimientos geométricos aparecen en las distintas culturas desde el principio, quizá unidos con los conceptos de belleza y armonía. En este trabajo se presenta un ejemplo de cómo este abordaje se puede llevar a cabo en la escuela en el nivel medio ligado con su aparición. Es posible encontrar múltiples ejemplos de distintos tipos de aplicaciones en los que los objetos geométricos y sus propiedades se hacen necesarios para estudiar las formas. Las catedrales góticas suministran un bello ejemplo en el que la geometría aparece no sólo en las formas de las construcciones arquitectónicas, sino en particular en las composiciones artísticas de las ventanas. Se propone realizar un análisis de cuáles fueron los conceptos geométricos que manejaron los constructores para lograr estas obras de arte.
Resumo:
Se muestra la construcción de algunas cónicas por medio del software de geometría dinámica llamado RyC. Una de las principales ventajas de esta herramienta es que permite animar las construcciones geométricas conservando sus propiedades básicas, es decir, que le agrega movimiento a la clásica geometría euclidiana.
Resumo:
Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
En este trabajo se presentan y analizan los problemas propuestos en el concurso matemático El inGENIO no tiene edad, que tuvo lugar en nuestro colegio y en el que se enfrentaron alumnos de todas las edades, desde infantil hasta bachillerato. Cada problema iba relacionado con un paso para construir una estrella de papel con interesantes propiedades matemáticas. El equipo que resolvía todos sus ejercicios aprendía a crear estrellas.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.
Resumo:
Este artículo se ha escrito con el objetivo de mostrar la superficie geométrica denominada banda de Möbius como herramienta para potenciar la motivación e interés de los alumnos, tanto de bachillerato como universitarios, en sus clases de Matemáticas. Esta superficie, que tiene varias propiedades muy curiosas, es en realidad un bucle girado, normalmente hecho de papel, fácilmente manipulable por los estudiantes. Para su construcción únicamente se necesitan lápiz, papel, pegamento y tijeras.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.
Resumo:
Este trabajo pretende plasmar el estudio de las cónicas como formas geométricas que se pueden generar de múltiples formas y que verifican propiedades que son utilizadas en la vida cotidiana. Debido al nivel en el que se imparte este tema, 4º de ESO, nos hemos centrado en la distinción a partir de la generación y características de cada cónica. Para llevar a cabo esta tarea se han utilizado elementos manipulables, algunos de los cuales pueden ser generados por los propios alumnos, para asentar mejor en ellos las distintas definiciones y propiedades.