1000 resultados para Porta, Carlo Antonio Melchiore Filippo, 1775-1821.
Resumo:
A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.
Resumo:
We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.
Resumo:
The general methodology of classical trajectories as applied to elementary chemical reactions of the A+BC type is presented. The goal is to elucidate students about the main theoretical features and potentialities in applying this versatile method to calculate the dynamical properties of reactive systems. Only the methodology for two-dimensional (2D) case is described, from which the general theory for 3D follows straightforwardly. The adopted point of view is, as much as possible, that of allowing a direct translation of the concepts into a working program. An application to the reaction O(¹D)+H2->O+OH with relevance in atmospheric chemistry is also presented. The FORTRAN codes used are available through the web page www.qqesc.qui.uc.pt.
Resumo:
A lab-made interface for acquisition of instrumental analog signals between 0 and 5 V at a frequency up to 670 kHz at the parallel port of a microcomputer is described. Since it uses few and small components, it was built into the connector of a printer parallel cable. Its performance was evaluated by monitoring the signals of four different instruments and similar analytical curves were obtained with the interface and from readings from the instrument' displays. Because the components are cheap (~U$35,00) and easy to get, the proposed interface is a simple and economical alternative for data acquisition in small laboratories for routine work, research and teaching.
Resumo:
The results suggest that the two variables studied are significant and that they may be independently optimized. The material of the sample holder interferes with the incineration process only due to the amount of heat transfered. The sample holder volume aids diffusion of the atmosphere to the honey sample, minimizing the foaming effect. According to the results, for the thermogravimetric analysis of ash content in honey, sample holders of platinum or alumina of 150 µL are indicated.
Resumo:
It is traditionally considered that the «Aldana», whom Gaspar Gil Polo praises at the end of his «Canto de Turia» (1564), was Francisco de Aldana, the «divino». It is nonetheless more probable that it was in fact rather the Valencian poet, Marco Antonio Aldana, almost forgotten today, but very much in the public eye within the cultivated circles of the end of the sixteenth century Valencia
Resumo:
We make several simulations using the Monte Carlo method in order to obtain the chemical equilibrium for several first-order reactions and one second-order reaction. We study several direct, reverse and consecutive reactions. These simulations show the fluctuations and relaxation time and help to understand the solution of the corresponding differential equations of chemical kinetics. This work was done in an undergraduate physical chemistry course at UNIFIEO.
Resumo:
The paper presents an introductory and general discussion on the quantum Monte Carlo methods, some fundamental algorithms, concepts and applicability. In order to introduce the quantum Monte Carlo method, preliminary concepts associated with Monte Carlo techniques are discussed.
Resumo:
Alexandre Vandelli was the heir of two illustrious scientific traditions in the Luso-Brazilian world of the late eighteenth and early nineteenth centuries, that of his father, the celebrated Italian-Portuguese naturalist and chemist Domingos (Domenico) Vandelli, and that of his father-in-law, that protean figure in several scientific specialties as well as in politics, José Bonifácio de Andrada e Silva, who in later life was of paramount importance in the process of Brazilian independence from Portugal. The younger Vandelli followed their footsteps but soon engaged in a multiple career, at first in Portugal and later in Brazil, of which little is known and is here presented for the first time.
Resumo:
A software based in the Monte Carlo method have been developed aiming the teaching of important cases of mechanisms found in luminescence and in excited states decay kinetics, including: multiple decays, consecutive decays and coupled systems decays. The Monte Carlo Method allows the student to easily simulate and visualize the luminescence mechanisms, focusing on the probabilities of the related steps. The software CINESTEX was written for FreeBASIC compiler; it assumes first-order kinetics and any number of excited states, where the pathways are allowed with probabilities assigned by the user.
Resumo:
Conventional sample holder cells used to the electric characterization of ceramics at high temperature consists of an alumina tube and platinum wires and plates using a complex design. The high cost materials used in the conventional sampler holder cell were replaced by stainless steel and conventional ceramics. The sample holder was validated by characterizing yttria-stabilized-zirconia in a temperature range of 25 to 700 ºC. The results do not present variations, discontinuity or unusual noise in the electric signals. Several samples were characterized without maintenance, which demonstrates that the sample holder is electric and mechanic adequate to be used to electrical characterization of ceramics up to 700 ºC.
Resumo:
A software based in the Monte Carlo method has been developed aiming the teaching of the Perrin´s model for static luminescence quenching. This software allows the student to easily simulate the luminescence decays of emissive molecules in the presence of quenching ones. The software named PERRIN was written for FreeBASIC compiler and it can be applied for systems where the molecules remain static during its excited state lifetime. The good agreement found between the simulations and the expected theoretical results shows that it can be used for the luminescence and excited states decay kinetic teaching.
Resumo:
By using the Monte Carlo simulation platform with probabilistic mathematical functions of the Boltzmann type, , having activation energy and temperature as parameters, it was possible to assess important dynamic aspects of homogeneous chemical reactions of the types A → B and A
B. The protocol proved a useful tool in work with the basic concepts of Kinetics and Thermodynamics allowing its application both in class activities and for assisting experimental procedures.