935 resultados para Phenyl thiosemicarbazide
Resumo:
We carried out experiments of induced birefringence via two-photon absorption in spin-coated films of the conjugated polymer poly[2-[ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino]-ethane (3-thienyl)ethanoate], PAzT, at 680 and 775 nm. This process allows recording in the bulk because of the spatial confinement of the bireffingence provided by the two-photon absorption. The induced birefringence is associated with molecular reorientation caused by the two-photon induced isomerization of the azochromophores attached to the polymer backbone. In addition, the two-photon absorption spectrum of PAzT was measured to help selecting the excitation wavelength for two-photon absorption induced birefringence. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present work 2-formylpyridine-para-chloro-phenyl hydrazone (H2FopCIPh) and 2-formylpyridine-para-nitro-phenyl hydrazone (H2FopNO(2)Ph) were obtained, as well as their copper(II) and zinc(II) complexes [Cu(H2FopClPh)Cl(2)] (1), [Cu(2FopNO(2)Ph)Cl] (2), [Zn(H2FopClPh)Cl(2)] (3) and [Zn(H2FopNO(2)Ph)Cl(2)] (4). Upon re-crystallization in DMSO:acetone conversion of 2 into [Cu(2FopNO(2)Ph)Cl(DMSO)] (2a) and of 4 into [Zn(2FopNO(2)Ph)Cl(DMSO)] (4a) occurred. The crystal structures of 1, 2a, 3 and 4a were determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
Resumo:
Chlortalidone (HIGROTON) is a diuretic drug widely used in antihypertensive therapy. Thus far, only two solid-state polymorphs of chlortalidone have been reported. We elucidated the structure of chlortalidone form I and a new polymorph. This new phase, namely, chlortalidone form III, was also entirely characterized. It was possible to conclude that it is a conformer with a different orientation of the chlorobenzenesulfonamide moiety. Compared to form I, it has a rotation of about 90 degrees on the axis of the C-C bond bridging the substituted phenyl and isoindolinyl rings. This conformational feature is related to the crystal packing patterns of the chlortalidone forms. Furthermore, certain intermolecular hydrogen bonds are present in both polymorphs, giving rise to ribbons with chlortalidone enantiomers alternately placed into them. The chlortalidone form I and form III crystallize in the triclinic space group P (1) over bar as racemic mixtures. Additional conformational details also differentiate the chlortalidone conformers. Slight twists on the isoindolinyl and sulfamyl groups exist. Considering all structural relationships, the fingerprint plots derived from the Hirshfeld surfaces exhibited the characteristics of the chlortalidone form I and form III crystal structures.
Resumo:
Two aspartyl proteases activities were identified and isolated from Trypanosoma cruzi epimastigotes: cruzipsin-I (CZP-I) and cruzipsin-II (CZP-II). One was isolated from a soluble fraction (CZP-II) and the other was solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate(CZP-I). The molecular mass of both proteases was estimated to be 120 kDa by HPLC gel filtration and the activity of the enzymes was detected in a doublet of bands (56 and 48 kDa) by substrate-sodium dodecyl sulphate-polyacrylamide-gelatin gel electrophoresis. Substrate specificity studies indicated that the enzymes consistently hydrolyze the cathepsin D substrate Phe-Ala-Ala-Phe (4-NO(2))-Phe-Val-Leu-O(4)MP but failed to hydrolyze serine and other protease substrates. Both proteases activities were strongly inhibited by the classic inhibitor pepstatin-A (>= 68%) and the aspartic active site labeling agent, 1,2-epoxy-3-(phenyl-nitrophenoxy) propane (>= 80%). These findings show that both proteases are novel T. cruzi acidic proteases. The physiological function of these enzymes in T. cruzi has under investigation. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cyclization of thiosemicarbazones derived from beta-keto esters and beta-keto amides (HTSC) in the presence of diphenyllead(IV) acetate was explored in methanol solution at room temperature and under reflux. All beta-keto ester TSCs underwent cyclization to give the corresponding pyrazolone (HL), which, except in one case, deprotonated and coordinated the PbPh(2)(2+) moiety to form homoleptic [PbPh(2)(L)(2)] or heteroleptic [PbPh(2)(OAc)(L)] derivatives. Cyclization did not occur with beta-keto amide TSCs and only [Pbph(2)(TSC)(2)] or [PbPh(2)(OAc)(TSC)] thiosernicarbazonates were isolated. The complexes were characterized by IR spectroscopy in the solid state and by (1)H, (13)C and (207)Pb NMR spectroscopy in DMSO-d(G) solution, in which they evolve and decompose with time. Additionally, crystals of p-acetoacetanisidide thiosemicarbazone (HTSC(10)), [PbPh(2)(OAc)(L(5))] center dot MeOH (HL(5) = 2,5-dihydro-3,4-dimethyl-5-oxo-1H-pyrazolone-1-carbothioamide), [PbPh(2)Cl(L(2))] (HL(2) = 2,5-dihydro-5-oxo-3-phenyl-1H-pyrazolone-1-carbothioamide), [PbPh(2)(OAc)(TSC(8))]center dot 2MeOH (HTSC(8) = acetoacetanilide thiosemicarbazone), [PbPh(2)(OAc)(TSC(10))]center dot H(2)O and [PbPh(2)(OAc)(TSC(11))] center dot 0.75MeOH (HTSO(11) = o-acetoacetotoluidide) were studied by X-ray crystallography. The complexes, monomers or dimers with almost linear C-Pb-C moieties, are compared with the corresponding derivatives of Pb(II). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of VOCl(2) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH) Cl(2)] (1), [VO(H2Am4Me) Cl(2)] center dot 1/2HCl (2), [VO(H2Am4Et) Cl(2)] center dot HCl (3) and [VO(2Am4Ph) Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO(2)(2Am4DH)] (5), [VO(2)(2Am4Me)] (6), [VO(2)(2Am4Et)] (7) and [VO(2)(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Gamma-lactams and bicyclic oxazolidines are important structural frameworks in both synthetic organic chemistry and related pharmacological fields. These heterocycles can be prepared by the rhodium-catalyzed carbonylation of unsaturated amines. In this work, allylaminoalcohols, derived from the aminolysis of cyclohexene oxide, styrene oxide, (R)-(+)-limonene oxide, and ethyl-3-phenyl-glicidate, were employed as substrates. These allylaminoalcohols were carbonylated by employing RhClCO(PPh3)(2) as a precatalyst under varying CO/H-2 mixtures, and moderate to excellent yields were obtained, depending on the substrate used. The results indicated that an increase in the chelating ability of the substrate (-OH and -NHR moieties) decreased the conversion and selectivity of the ensuing reaction. Additionally, the selectivity could be optimized to favor either the gamma-lactams or the oxazolidines by controlling the CO/H-2 ratio. A large excess of CO provided a lactam selectivity of up to 90%, while a H-2-rich gas mixture improved the selectivity for oxazolidines, resulting from hydroformylation/cyclization. Studies of the reaction temperature indicated that an undesirable substrate deallylation reaction occurs at higher temperature (>100 degrees C). Further, kinetic studies have indicated that the oxazolidines and gamma-lactams were formed through parallel routes. Unfortunately, the mechanism for oxazolidines formation is not yet well understood. However, our results have led us to propose a catalytic cycle based on hydroformylation/acetalyzation pathways. The gamma-lactams formation follows a carbonylation route, mediated by a rhodium-carbamoylic intermediate, as previously reported. To this end, we have been able to prepare and isolate the corresponding iridium complex, which could be confirmed by X-ray crystallographic analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure and the vibrational spectrum of a potential drug for Chagas`s disease treatment, the (E)-isomer of phenylethenylbenzofuroxan 1 (5(6)(E)-[(2-phenylethenyl)]benzo[1,2-c]1,2,5-oxadiazole N-oxide), are reported. In order to provide insights into structural relationships, quantum mechanical calculations were employed starting from crystal structure. These results have given theoretical support to state interesting structural features, such as the effect of some intermolecular contacts on the molecule conformation and the electronic delocalization decreasing through atoms of the benzofuroxan moiety. Furthermore, the MOGUL comparative analysis in the Cambridge Structural Database provided additional evidences on these structural behaviors of compound 1. Intermolecular contacts interfere on the intramolecular geometry, as, for instance, on the phenyl group orientation, which is twisted by 12.32(6)A degrees from the ethenylbenzofuroxan plane. The experimental Raman spectrum of compound 1 presents unexpected frequency shift and also anomalous Raman activities. At last, the molecule skeleton deformation and the characteristic vibrational modes were correlated by matching the experimental Raman spectrum to the calculated one.
Resumo:
Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor N omega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(center dot)NO-cGMP signaling pathway playing a role in zoospore biogenesis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Methanolic extract powders of acerola, passion fruit and pineapple industrial residues, including pulp, seeds and peel, altogether (except for acerola) devoid of seeds, were screened for antioxidant capacity. The total phenolic contents (TPCs) of the extract powders were compared with their radical-scavenging activities (RSA) against both DPPH(center dot) and superoxide anion (O(2)(center dot-)) radicals, and their protective effect against liposome peroxidation, triggered by peroxyl radical. Lipid peroxidation was followed by the fluorescence decay of the probe, 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C(11)-BODIPY(581/591)). The TPCs of acerola, passion fruit and pineapple extract powders were (94.6 +/- 7.4); (41.2 +/- 4.2) and (9.1 +/- 1.3) mg of gallic acid equivalents g(-1) of dry extract, respectively. Acerola showed the best RSA-DPPH(center dot) scores, whereas passion fruit was more protective on the RSA-O(2)(center dot-) system. Together with the protective effects against lipid peroxidation (rate of BODIPY decay) which, were similar for acerola and passion fruit extracts, these data suggest that the methanolic extracts of acerola and passion fruit residues may be useful as antioxidant supplements, particularly the acerola extract, due to its high phenolic content. (C) 2008 Elsevier Ltd. All rights reserved
Resumo:
The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydi-oxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate`s effects on the pK(a), of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH`s compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1040-1052, 2009