970 resultados para Optimistic Linear Programming
Resumo:
For piecewise linear Lorenz map that expand on average, we show that it admits a dichotomy: it is either periodic renormalizable or prime. As a result, such a map is conjugate to a ß-transformation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. La programació al servei de la matemàtica és un programa informàtic fet amb Excel i Visual Basic. Resol equacions de primer grau, equacions de segon grau, sistemes d'equacions lineals de dues equacions i dues incògnites, sistemes d'equacions lineals compatibles determinats de tres equacions i tres incògnites i troba zeros de funcions amb el teorema de Bolzano. En cadascun dels casos, representa les solucions gràficament. Per a això, en el treball s'ha hagut de treballar, en matemàtiques, amb equacions, nombres complexos, la regla de Cramer per a la resolució de sistemes, i buscar la manera de programar un mètode iteratiu pel teorema de Bolzano. En la part gràfica, s'ha resolt com fer taules de valors amb dues i tres variables i treballar amb rectes i plans. Per la part informàtica, s'ha emprat un llenguatge nou per l'alumne i, sobretot, ha calgut saber decidir on posar una determinada instrucció, ja que el fet de variar-ne la posició una sola línea ho pot canviar tot. A més d'això, s'han resolt altres problemes de programació i també s'ha realitzat el disseny de pantalles.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
L'objectiu principal d'aquest projecte és ampliar la llibreria BinaryCodes, iniciada al 2007, que ens permet construir i manipular codis binaris lineals i no lineals. Per aquest motiu, s'han desenvolupat una sèrie de funcions, amb els seus corresponents tests i exemples, en l'entorn de programació matemàtica Magma. Aquestes funcions consisteixen bàsicament en la construcció de nous codis a partir d'altres ja existents.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
In economic literature, information deficiencies and computational complexities have traditionally been solved through the aggregation of agents and institutions. In inputoutput modelling, researchers have been interested in the aggregation problem since the beginning of 1950s. Extending the conventional input-output aggregation approach to the social accounting matrix (SAM) models may help to identify the effects caused by the information problems and data deficiencies that usually appear in the SAM framework. This paper develops the theory of aggregation and applies it to the social accounting matrix model of multipliers. First, we define the concept of linear aggregation in a SAM database context. Second, we define the aggregated partitioned matrices of multipliers which are characteristic of the SAM approach. Third, we extend the analysis to other related concepts, such as aggregation bias and consistency in aggregation. Finally, we provide an illustrative example that shows the effects of aggregating a social accounting matrix model.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. In [12] an algorithm, called extended relaxation method, that solves the feasibility problem, has been proposed by the authors. Convergence of the algorithm has been proven. In this paper, we onsider a class of extended relaxation methods depending on a parameter and prove their convergence. Numerical experiments have been provided, as well.
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.