970 resultados para Navier-Stokes-Smoluchowski
Resumo:
This paper reports that Al1-xInxN epilayers were grown on GaN template by metalorganic chemical vapor deposition with an In content of 7%-20%. X-ray diffraction results indicate that all these Al1-xInxN epilayers have a relatively low density of threading dislocations. Rutherford backscattering/channeling measurements provide the exact compositional information and show that a gradual variation in composition of the Al1-xInxN epilayer happens along the growth direction. The experimental results of optical reflection clearly show the bandgap energies of Al1-xInxN epilayers. A bowing parameter of 6.5 eV is obtained from the compositional dependence of the energy gap. The cathodoluminescence peak energy of the Al1-xInxN epilayer is much lower than its bandgap, indicating a relatively large Stokes shift in the Al1-xInxN sample.
Resumo:
New observations on the luminescence Of In2S3 and europium-doped In2S3 nanoparticles show a green (5 10 nm) emission from In2S3 and In1.8Eu0.2S3 nanoparticles while a blue (425 nm) emission is observed from ln(1.6)Eu(0.4)S(3) nanoparticles. Both the blue and green emissions have large Stokes shifts of 62 and 110 nm, respectively. Excitation with longer-wavelength photons causes the blue emission to shift to a longer wavelength while the green emission wavelength remains unchanged. The lifetimes of both the green and blue emissions are similar to reported values for excitonic recombination. When doped with Eu3+, in addition to the broad blue and green emissions, a red emission near 615 nm attributed to Eu3+ is observed. Temperature dependences on nanoparticle thin films indicate that with increasing temperature, the green emission wavelength remains constant, however, the blue emission shifts toward longer wavelengths. Based on these observations, the blue emission is attributed to exciton recombination and the green emission to Indium interstitial defects. These nanoparticles show full-color emission with high efficiency, fast lifetime decays, and good stability; they are also relatively simple to prepare, thus making them a new type of phosphor with potential applications in lighting, flat-panel displays, and communications.
Resumo:
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
Resumo:
ZnS1-xTex (0.02less than or equal toxless than or equal to0.3) alloys are studied by photoluminescence under hydrostatic pressure at room temperature. Only a wide emission band is observed for each sample. Its peak energy is much lower than the corresponding band gap of alloys. These bands are ascribed to the radiative annihilation of excitons bound at Te-n(ngreater than or equal to2) isoelectronic centers. The pressure coefficients of the emission bands are smaller than those of alloy band gaps from 48% to 7%. The difference of the pressure coefficient of the emission band and the band gap increases when the binding energy of Te-n centers decreases. It seems contrary to our expectation and needs further analysis. The integrated intensities of emission bands decrease with increasing pressure due to the decreasing of the absorption coefficient associated with the Te-n centers under pressure. According to this model the Stokes shifts between the emission and absorption bands of the Te-n centers are calculated, which decrease with the increasing Te composition in alloys.
Resumo:
We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.
Resumo:
CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.
Resumo:
We have measured photoluminescence of ZnSxTe1-x alloys (x > 0.7) at 300 K and under hydrostatic pressure up to 7 GPa. The spectra contain only a broad emission band under excitation of the 406.7 nm line. Its pressure coefficients are 47, 62 and 45 meV/GPa for x = 0.98, 0.92 and 0.79 samples, which are about 26%, 7% and 38% smaller than that of the band gap in the corresponding alloys. The Stokes shifts between emission and absorption of the bands were calculated by fitting the pressure dependence of the emission intensity, being 0.29, 0.48 and 0.13 eV for the three samples, respectively. The small pressure coefficient and large Stokes shift indicate that the emission band observed in our samples may correspond to the Te isoelectronic center in the ZnSxTe1-x alloy.
Resumo:
本文使用复杂晶体化学键理论对由Eu2+或Ce3+掺杂的复杂基质晶体的化学键性质进行了理论研究,同时对发光稀土离子的发光特性与其在所处晶体中所表现的化学键性质间的关系进行了理论上的探讨,所研究的对象是具有复杂晶体结构的系列晶态物质,其中包括Eu2+掺杂的碱土硼酸盐系列晶体、Eu2+掺杂的碱土硅酸盐系列晶体、Eu2+掺杂的碱土铝酸盐系列晶体,卤化硫硅酸饰系列晶体及Ce3+掺杂的碘化硫硅酸斓晶体等。理论计算的结果表明具有4f~(n+1) 4f ~n5d~1组态间跃迁Eu2+和Ce3+离子之所以在不同基质晶体中表现出不同的发光特性是与它在不同基质晶体中呈现出不同的化学键性质而造成的。更深入的研究发现,在晶体结构和中心离子配位环境非常相似的系列晶体中,’掺杂离子发射光的Stokes位移值与其所取代格位的平均共价性成正比的关系,这是由于Stokes位移的本质是发光离子在发光过程中向基质以光波辐射的形式传递能量,这一能量的大小是由基质的振动频率决定的,而基质的化学键性质恰恰决定着基质的振动频率。在碱土硼酸盐系列晶体中Ba2MgB2O6, BaBe2B2O6 1 Ba2LiB5Ojo和SrB4O7四种晶体所对应的点(Stokes shift vs Fc)处在同一条直线上,而SrA12B207和BaLiBO3晶体所对应的点并没有处在这条直线上。在碱土硅酸盐系列晶体中CaSiO3 1SrSiO3 , BaSiO3三种‘晶体所对应的点处于同一条直线上,而同一系列的Sr2LiSiO4F, BasS1O4Br,BaSSiO4Cl。三种晶体所对应的点却处在另一条直线上,造成这种分组的原因是由于处于同一直线上的晶体属于键性相近的晶体。进一步研究表明掺杂离子发射光的Stokes位移值不仅与所处的晶体有关,还与其在晶体中所处的不同格位的键性有关。在讨论键性与轨道劈裂能之间的关系时发现,化学键性质确实是影响劈裂能大小的一个因素,但由于还存在其它因素影响着轨道的能级劈裂,所以目前我们没能确定出化学键性质与轨道劈裂能之间的定量关系。
Resumo:
The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWINT bundles can be interpreted very well.
Resumo:
Two obvious emissions are observed from the ZnS clusters encapsulated in zeolite-Y. The emission around 355 nm is sharp and weak, locating at the onset of the absorption edge. The band around 535 nm is broad, strong and Stokes-shifted. Both the two emissions shift to blue and their intensities firstly increase then decrease as the loading of ZnS in zeolite-Y or clusters size decreases. Through investigation, the former is attributed to the excitonic fluorescence, and the latter to the trapped luminescence from surface states. The cluster size-dependence of the luminescence may be explained qualitatively by considering both the carrier recombination and the nonradiative recombination rates. Four peaks appearing in the excitation spectra are assigned to the transitions of 1S-1S, 1S-1P, 1S-1D and surface state, respectively. The excitation spectra of the clusters do not coincide with their absorption spectra. The states splitted by quantum-size confinement are detected in the excitation spectra, but could not be differentiated in the optical absorption spectra due to inhomogeneous broadening. The size-dependence of the excitation spectra is similar to that of the absorption spectra. Both the excitation spectra of excitonic and of trapped emissions are similar, but change in relative intensity and shift in position are observed.
Resumo:
研究了ZnS1-xTex(0.02≤x≤0.3)混晶的静压光致发光谱。每块样品都观察到一个峰值比相应混晶带隙低很多的发光峰,来源于束缚在Ten(n≥2)等电子陷陆上的激子复合发光,且随压力(0.7GPa)而蓝移、发光峰的压力系数比相应混晶带边的都要小,随着Te组分的增加而减小,与混晶带隙压力系数的差别也越来越大。由于压力下与发光峰对应的吸引能量逐渐接近并超过激发光的能量,与发光峰有关的吸收效率降低,发光峰积分强度随着压力增加而减小。据此估算了Ten等电子中心的Stokes位移。发现Stokes位移随着Te组分的增加而减小。
Resumo:
The different resonant Raman scattering process of single-walled carbon nanotubes (SWNTs) has been found between the Stokes and anti-Stokes sides of the radial breathing modes (RBMs), and this provides strong evidence that Raman spectra of some special diametric SWNTs are in resonance with their electronic transitions between the singularities in the one-dimensional electronic density of states in the valence and conduction bands, and other SWNTs axe beyond the resonant condition. Because of the coexistence of resonant and non-resonant Raman scattering processes for different diametric SWNTs, the relative intensity of each RBM does not reflect the proportion of a particular SWNT.
Resumo:
The effects of high temperature annealing on the microstructure and optical properties of luminescent SiOx:H films have been investigated. Micro-Raman scattering and IR absorption, in combination with atomic force microscopy (AFM), provide evidence for the existence of both a-Si clusters in the as-grown a-SiOx:H and Si nanocrystals in the 1170 degrees C annealed films. The dependence of optical coefficients (alpha) on photon energy (h nu) near the absorption edge (E-g) is found to follow the square root law: (alpha h nu)(1/2) proportional to (E-g - h nu), indicating that nano-Si embedded in SiO2 is still an indirect material. A comparison of the deduced absorption edge with the PL spectra shows an obvious Stokes shift, suggesting that phonons should be involved in the optical transition process.