867 resultados para Mathematical transformations
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.
Resumo:
This work presents major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
Abstract Background The criteria for organ sharing has developed a system that prioritizes liver transplantation (LT) for patients with hepatocellular carcinoma (HCC) who have the highest risk of wait-list mortality. In some countries this model allows patients only within the Milan Criteria (MC, defined by the presence of a single nodule up to 5 cm, up to three nodules none larger than 3 cm, with no evidence of extrahepatic spread or macrovascular invasion) to be evaluated for liver transplantation. This police implies that some patients with HCC slightly more advanced than those allowed by the current strict selection criteria will be excluded, even though LT for these patients might be associated with acceptable long-term outcomes. Methods We propose a mathematical approach to study the consequences of relaxing the MC for patients with HCC that do not comply with the current rules for inclusion in the transplantation candidate list. We consider overall 5-years survival rates compatible with the ones reported in the literature. We calculate the best strategy that would minimize the total mortality of the affected population, that is, the total number of people in both groups of HCC patients that die after 5 years of the implementation of the strategy, either by post-transplantation death or by death due to the basic HCC. We illustrate the above analysis with a simulation of a theoretical population of 1,500 HCC patients with tumor size exponentially. The parameter λ obtained from the literature was equal to 0.3. As the total number of patients in these real samples was 327 patients, this implied in an average size of 3.3 cm and a 95% confidence interval of [2.9; 3.7]. The total number of available livers to be grafted was assumed to be 500. Results With 1500 patients in the waiting list and 500 grafts available we simulated the total number of deaths in both transplanted and non-transplanted HCC patients after 5 years as a function of the tumor size of transplanted patients. The total number of deaths drops down monotonically with tumor size, reaching a minimum at size equals to 7 cm, increasing from thereafter. With tumor size equals to 10 cm the total mortality is equal to the 5 cm threshold of the Milan criteria. Conclusion We concluded that it is possible to include patients with tumor size up to 10 cm without increasing the total mortality of this population.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.
Resumo:
Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.
Resumo:
In this thesis, mechanistic and synthetic studies on transformations of H-phosphonates into DNA analogues containing P-S or P-C bonds are described. Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated. In light of these studies, the reported stereoselective sulfurisation of dinucleoside H-phosphonates and benzoylphosphonates in the presence of DBU was proved to be incorrect. Efficient protocols for the synthesis of new nucleotide analogues with non-ionic C-phosphonate internucleotide linkages were developed. The synthesis of dinucleoside 2-pyridylphosphonates was successfully performed by a DBU-promoted reaction of H-phosphonate diesters with N-methoxypyridinium salts. The thio analogues, 2-pyridyl- and 4-pyridyl phosphonothioate diesters, could be obtained by modifying the reactions developed for their oxo counterparts. Dinucleoside 3-pyridylphosphonates were prepared via a palladium(0)-catalysed cross coupling strategy that could be extended also to the synthesis of nucleotide analogues with metal-complexing properties, i.e. terpyridyl- and bipyridylphosphonate derivatives. Oligonucleotides modified with pyridylphosphonate internucleotide linkages have been prepared and preliminary studies on their hybridisation properties and resistance towards enzymatic degradation were performed. Finally, nucleotidic units for the incorporation of pyridylphosphonate groups at the 5’-terminus of oligonucleotides were designed. Condensations of such units with a suitably protected nucleoside afforded after oxidation the expected dinucleoside (3’-5’)-phosphates with pyridylphosphonate monoester functions at the 5’-ends.
Resumo:
Diploma de Estudios Avanzados y Tesis de Máster
Resumo:
[EN] Rigorous Mathematical Analysis in the Cauchy style was not accepted in a straightforward manner by the European mathematical community of the central years of the 19th Century. In average, only around forty years after the 1821 Cours d'Analyse did Cauchy's treatment become a standard in the more mathematically advanced countries, as a paradigm that remained in use until the arithmetisation of Analysis by Weierstrass replaced it before the end of the century. ln this paper the authors show how rigorous Mathematical Analysis à la Cauchy was adopted in Spain quite late -around 1880- and how in sorne more forty years, the Weierstrassian formulation became the usual presentation in Spanish texts
Resumo:
[EN] Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.