861 resultados para Las Casas, Filosofía Latinoamericana
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
El presente trabajo muestra parte de los resultados de un proyecto de investigación desarrollado en el Instituto Politécnico Nacional, relacionados con el estudio de variación, concepto que es esencial para analizar diferentes fenómenos físicos y de la vida cotidiana empleando para ello la exploración múltiples representaciones a partir de tratamientos cuantitativos, cuyo objetivo fue analizar las diferentes estrategias que el alumno emplea cuando enfrenta situaciones que están ligados a la noción de variación. En particular el estudio se enfocó en la noción de función que es vista como modelo para el estudio de la variación, para lo cual se diseñaron actividades con el propósito de fomentar la exploración de tratamientos cuantitativos que beneficien la identificación del contenido en múltiples representaciones. La experiencia se realizó con alumnos del nivel medio superior que cursaban la asignatura de Álgebra, impulsando un ambiente de comunicación y discusión continua.
Resumo:
Este artículo forma parte de la investigación maestría de la autora. En este artículo se identifican qué tendencias cognitivas presentan estudiantes de bachillerato cuando se enfrentan al tema de tangentes a las cónicas en un curso de Geometría Analítica (UNAM, 1996). También se analiza si este curso permite una mejor comprensión de la sintaxis algebraica.
Resumo:
En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.
Resumo:
En este artículo reportamos los primeros resultados de un estudio de las concepciones de los profesores sobre los problemas y ejercicios planteados en los libros de texto de matemáticas en educación secundaria, en términos de las actitudes positivas o negativas que pueden producir en los alumnos. Hemos analizado distintos trabajos que abordan esta problemática, en el sentido de que los problemas propuestos en los libros de texto generan gusto o rechazo a las matemáticas, en dependencia de los contextos en los que están inmersos. También se reporta el reconocimiento que hacen a estos problemas ocho profesores de este nivel educativo quienes describen las razones por las que un problema genera uno u otro tipo de actitud. En el futuro próximo, se plantea que los problemas discutidos serán resueltos por los alumnos, constatando las conjeturas de los profesores.
Resumo:
El objetivo principal de este trabajo surge por la inquietud de estudiantes y profesores de Institutos de Educación Universitaria en Venezuela (Universidad Simón Bolívar, Universidad Nacional Abierta, Universidad Nacional Experimental de las Fuerzas Armadas, Universidad Pedagógica, entre otras); así como también los comentarios de algunos colegas de Universidades en Costa Rica y República Dominicana, donde se observa con gran preocupación el rechazo que presentan y plantean muchos profesores en el área de las matemáticas al uso e implementación de las tecnologías en sus programas y contenidos programáticos. Luego de realizar los estudios y corroborar el grado de analfabetismo tecnológico existente en los profesores de matemática, se consideraron elaborar cursos, diplomados y talleres para involucrar a nuestros docentes en el uso de las tecnologías.
Resumo:
En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que tienen estudiantes de primer ingreso universitarios de Costa Rica en temas de geometría y sistemas de ecuaciones mediante el modelo SOLO Taxonómico. Este modelo categoriza la actividad mental que realizan los sujetos cuando se enfrentan a una tarea escolar, considerando aspectos cuantitativos y cualitativos. Inicialmente los estudiantes se ubican en los primeros niveles de razonamiento en los temas de geometría y en niveles intermedios en sistemas de ecuaciones, al final los estudiantes mostraron mejoría después de un curso introductorio de matemáticas.
Resumo:
Con el objetivo de integrar la diversidad en el aula, a nivel mundial se reconoce ampliamente la importancia de dar respuesta a las necesidades de un grupo muy especial de la población, aquellos estudiantes que destacan de alguna forma dentro del contexto escolar. En México estos estudiantes están considerados dentro de la población con necesidades educativas especiales y requieren de una atención educativa especial de tal forma que puedan desarrollar al máximo sus capacidades.
Resumo:
En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que poseen estudiantes de primer ingreso universitarios de Costa Rica en temas de algebra elemental, tales como simplificación de expresiones algebraicas y factorización. El estudio está apoyado en el modelo SOLO Taxonómico propuesto por Biggs & Collis, 1982.
Resumo:
En el documento se realiza un análisis sobre las pruebas nacionales de Matemáticas para Bachillerato en Costa Rica, se incluye la opinión de una muestra de 249 profesores de esta disciplina pertenecientes a diferentes regiones educativas del país. Los resultados muestran que no existe consenso entre estos educadores respecto a la conveniencia de estos exámenes para mejorar el proceso educativo. Dentro de las principales preocupaciones se encuentra la denuncia que hacen las universidades por la mala formación matemática con que los jóvenes llegan a estas instituciones, el efecto que implica el uso de la calculadora para la resolución de estos exámenes, así como también preocupa el condicionamiento que las pruebas pueden provocar en la actividad académica cotidiana, específicamente en la metodología de trabajo y en las evaluaciones regulares del proceso educativo, entre otras.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.
Resumo:
La Socioepistemología a través de diversos resultados de investigación, señala la conveniencia de hacer estudios del uso del conocimiento matemático y su desarrollo para crear un marco que ofrezca las prácticas de referencia en donde se resignifique la matemática. Bajo esa premisa estudiamos los usos de la gráfica en el bachillerato, con el fin de construir un marco de referencia que dé evidencia de los funcionamientos y formas de las gráficas y en consecuencia una resignificación del conocimiento. Lo anterior abre una nueva brecha para tratar a la gráfica, puesto que no la miramos como la representación de algún concepto matemático. Por el contrario, la graficación es abordada como la argumentación que genera conocimiento. En ese sentido, afirmamos que tratamos con una segmentación del conocimiento, puesto que hay un cambio de enfoque que nos conduce a teorizar sobre el uso del conocimiento y como consecuencia se genera un subuniverso de significados.
Resumo:
Nuestra propuesta, la cual es resultado de una investigación en proceso, se encuentra inserta en el nivel Medio Superior y es relativa a la Geometría Analítica, específicamente a la construcción de las cónicas. Se nutre del plegado de papel y del uso de un software de geometría dinámica (Cabri Geomètre II) como recursos didácticos. Su referencia teórica está basada en los niveles del razonamiento geométrico de Van Hiele. Caracterizamos, así, la construcción geométrica en tres momentos: la intuición a través del plegado de papel; la visualización vía un software de geometría dinámica como herramienta didáctica argumentativa; y por último formalizando las argumentaciones y conjeturas establecidas al analizar las cónicas vía la técnica del Debate Científico.